Graphene: future of high power density electrical machines for electric vehicle applications
by Ramesh Pandiyarajan; Lenin Natesan Chokkalingam
International Journal of Electric and Hybrid Vehicles (IJEHV), Vol. 12, No. 2, 2020

Abstract: The key challenges faced by many of the industries in the present scenario is to develop a high power density electrical machine. The advancements in material technology help the industries to enhance the power density as well as the efficiency of an electrical machine to a greater extent. Conductors play a major role in improving the machine's performance. In this paper, the role of conducting materials in high power density electrical machines are discussed. Graphene is an advanced nanomaterial that exhibits excellent conductivities with low mass density. Using graphene coated windings, the weight and volume of the machine can be reduced significantly. In order to understand the prominent features of the nanomaterial based conductors, a case study has been carried out in different electric vehicles such as Toyota Prius (2017), Nissan LEAF and BMW i3. Moreover, a major constraint in high power density machine is the temperature rise, which is discussed at the end.

Online publication date: Thu, 02-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electric and Hybrid Vehicles (IJEHV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com