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Abstract: The concept of Pythagorean fuzzy sets (PFSs) is pertinent
in finding reliable solution to decision-making problems, because of its
unique nature of indeterminacy. Pythagorean fuzzy set is characterised by
membership degree, non-membership degree, and indeterminate degree in
such a way that the sum of the square of each of the parameters is one.
The objective of this paper is to present some new similarity measures
for PFSs by incorporating the conventional parameters that describe PFSs,
with applications to some real-life decision-making problems. Furthermore,
an illustrative example is used to establish the applicability and validity
of the proposed similarity measures and compare the results with the
existing comparable similarity measures to show the effectiveness of the
proposed similarity measures. While analysing the reliability of the proposed
similarity measures in comparison to analogous similarity measures for PFSs
in literature, we discover that the proposed similarity measures, especially, s4
yields the most reasonable measure. Finally, we apply s4 to decision-making
problems such as career placement, medical diagnosis, and electioneering
process. Additional applications of these new similarity measures could be
exploited in decision making of real-life problems embedded with uncertainty
such as in multi-criteria decision-making (MCDM) and multi-attribute
decision-making (MADM), respectively.
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1 Introduction

Decision making is a universal process in the life of human beings, which can be
described as the final outcome of some mental and reasoning processes that lead to the
selection of the best alternative. In many situations, it is difficult for decision makers
to precisely express a preference regarding relevant alternatives under several criteria,
especially when relying on inaccurate, uncertain, or incomplete information (Zhang,
2016). Multi-criteria decision-making (MCDM) is defined as the process that involves
the analysis of a finite set of alternatives and ranking them in terms of how credible
they are to decision makers when all the criteria are considered simultaneously (Garg
and Rani, 2019a). To this end, the theory of fuzzy sets was introduced by Zadeh (1965)
to address multi-criteria decision-making (MCDM) problems within uncertainty. Fuzzy
set is characterised by a membership function, µ which takes value from a crisp set
to a unit interval I = [0, 1]. With the massive imprecise and vague information in the
real world, diverse extensions of fuzzy set have been developed by some researchers.
The notion of intuitionistic fuzzy sets (IFSs) was proposed by Atanassov (1983, 1986,
1989, 2012) as a generalised framework of fuzzy sets. Sequel to the introduction of
IFSs, a lot of attentions have been paid on developing measures for IFSs, as a way to
apply them to solving many decision-making problems. As a result, some measures were
proposed (see Szmidt, 2014; Ye, 2011; Liang and Shi, 2003; Boran and Akay, 2014).
Some applications of IFSs have been carried out in medical diagnosis (see Davvaz and
Sadrabadi, 2016; De et al., 2001; Ejegwa and Modom, 2015; Szmidt and Kacprzyk,
2001, 2004; Ejegwa and Onasanya, 2019), career determination (Ejegwa et al., 2014a;
Ejegwa and Onyeke, 2019), selection process (Ejegwa, 2015), and other multi-criteria
decision making problems (Ejegwa et al., 2014b, 2014c, 2016; Garg and Singh, 2018,
2018a, 2018b), among other, some using measures for IFSs.

The idea of Pythagorean fuzzy sets (PFSs) proposed by Yager (2013a, 2013b)
is a new tool to deal with vagueness considering the membership grade, µ and
non-membership grade, ν in such a way that the sum of the square of each of
the membership grade and the non-membership grade is less than or equal to one,
unlike in IFSs. Honestly speaking, the origin of Pythagorean fuzzy sets emanated from
intuitionistic fuzzy sets of second type (IFSST) introduced in Atanassov (1989, 1999)
as generalised IFSs. As a generalised set, PFS has close relationship with IFS. The
concept of PFSs can be used to characterise uncertain information more sufficiently and
accurately than IFSs. Garg (2017b) presented an improved score function for the ranking
order of interval-valued Pythagorean fuzzy sets (IVPFSs). Based on it, a Pythagorean
fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) method
by taking the preferences of the experts in the form of interval-valued Pythagorean
fuzzy decision matrices was discussed. In fact, the theory of PFSs has been extensively
studied, as shown in Beliakov and James (2014), Dick et al. (2016), Garg (2018a,
2018b, 2018d, 2018e, 2019b), Gou et al. (2016), He et al. (2016), Liang and Xu (2017),
Mohagheghi et al. (2017), Peng and Yang (2015) and Peng and Selvachandran (2017).

In connection to the applications of PFSs in real-life situations, Rahman et al. (2017)
worked on some geometric aggregation operators on interval-valued PFSs (IVPFSs)
and applied same to group decision-making problem. Perez-Dominguez et al. (2018)
presented a multiobjective optimisation on the basis of ratio analysis (MOORA) under
PFS setting and applied it to MCDM problem. Rahman et al. (2018b) proposed some
approaches to multi-attribute group decision making based on induced interval-valued
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Pythagorean fuzzy Einstein aggregation operator. In a nutshell, the idea of Pythagorean
fuzzy sets has attracted great attentions of many scholars, and the concept has been
applied to several application areas viz; multi-criteria decision making (MCDM),
multi-attribute decision making (MADM), aggregation operators, information measures,
etc. For details, see Ejegwa (2019a, 2019b, Ejegwa and Awolola (2019), Garg (2018a,
2018b, 2018d, 2018e, 2019b), Liang and Xu (2017), Mohagheghi et al. (2017), Gao and
Wei (2018), Rahman et al. (2018a), Rahman and Abdullah (2018), Khan et al. (2018a,
2018b), Garg (2016a, 2016b, 2016c, 2017a, 2018c), Du et al. (2017), Hadi-Venchen and
Mirjaberi (2014), Yager (2014, 2016), Yager and Abbasov (2013), Zhang and Xu (2014)
and Zhang (2016).

Similarity measure for PFSs is a function that shows how comparable two or more
PFSs are to each other. In fact, it is a dual concept of distance measure for PFSs.
Similarity measures for PFSs have gained much attentions for their wide applications
in real world, such as pattern recognition, machine learning, decision making and
market prediction. Many measures of similarity between PFSs have been proposed
and researched in recent years, in short, from different perspectives. In Li and Zeng
(2018), some distance/dissimilarity measures for PFSs and Pythagorean fuzzy numbers,
which take into account four parameters, were proposed. It is observed that, the four
parameters are not the conventional features of PFSs. Also, in Peng (2018), a new
similarity measure and a new dissimilarity measure for Pythagorean fuzzy set were
introduced by incorporating four parameters more than the three traditional components
of PFSs. The notions of similarity and dissimilarity of PFSs as extension of the work
in Li and Zeng (2018) were introduced in Zeng et al. (2018) by incorporating five
parameters, and applied to multi-criteria decision-making (MCDM) problems. Howbeit,
the five parameters captured are not the traditional components of PFSs. In Wei and
Wei (2018), some similarity measures between PFSs based on the cosine function were
proposed by considering the degree of membership, degree of non-membership and
degree of hesitation, and applied to pattern recognition and medical diagnosis. The
notion of dissimilarity measure for PFSs studied in Zhang and Xu (2014) incorporated
only the three traditional parameters of PFSs, notwithstanding, the measure failed the
metric distance conditions. A similarity measure for PFSs based on the combination of
cosine similarity measure and Euclidean distance measure featuring only membership
and non-membership degrees were introduced in Mohd and Abdullah (2018). Of recent,
some dissimilarity and similarity measures for PFSs which satisfied the metric distance
conditions were introduced in Ejegwa (2018) by incorporating the three conventional
parameters of PFSs.

As a result of the survey of some similarity measures for PFSs (Peng, 2018; Zeng
et al., 2018; Wei and Wei, 2018; Mohd and Abdullah, 2018); especially, those similarity
measures (Ejegwa, 2018) that incorporated the three conventional parameters of PFSs,
the need to propose new similarity measures for PFSs with more reasonable, reliable,
and efficient output, is undeniable. Thus, the motivation of this work. This paper
explores some new similarity measures for PFSs. By taking into account the three
parameters characterisation of PFSs (viz; membership degree, non-membership degree
and indeterminate degree), we propose some new similarity measures for PFSs with
applications to decision-making problems. The paper is organised by presenting some
basic notions of PFSs in Section 2. In Section 3, we reiterate some similarity measures
for PFSs studied in Ejegwa (2018) with some numerical examples. Also in Section 3,
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some new similarity measures for PFSs are proposed with numerical examples.
Section 4 discusses some applications of the most accurate of the similarity measures for
PFSs to decision-making problems. Finally, Section 5 summarises the resulted outcomes
of the paper with direction for future studies.

2 Basic notions of Pythagorean fuzzy sets

We recall some basic notions of fuzzy sets, IFSs and PFSs to be used in the sequel.

Definition 2.1 (Zadeh, 1965): Let X be a non-empty set. A fuzzy set A of X is
characterised by a membership function

µA : X → [0, 1].

That is,

µA(x) =


1, if x ∈ X

0, if x /∈ X

(0, 1), if x is partly inX

Alternatively, a fuzzy set A of X is an object having the form

A = {⟨x, µA(x)⟩ | x ∈ X} orA =

{⟨
µA(x)

x

⟩∣∣∣∣x ∈ X

}
,

where the function

µA(x) : X → [0, 1]

defines the degree of membership of the element, x ∈ X .

Definition 2.2 (Atanassov, 1983, 1986): Let a non-empty set X be fixed. An IFS A of
X is an object having the form

A = {⟨x, µA(x), νA(x)⟩ | x ∈ X}

or

A = {⟨µA(x), νA(x)

x
⟩
∣∣∣∣x ∈ X},

where the functions

µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively of the
element x ∈ X to A, which is a subset of X , and for every x ∈ X ,

0 ≤ µA(x) + νA(x) ≤ 1.
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For each A in X ,

πA(x) = 1− µA(x)− νA(x)

is the intuitionistic fuzzy set index or hesitation margin of x in X . The hesitation margin
πA(x) is the degree of non-determinacy of x ∈ X , to the set A and πA(x) ∈ [0, 1]. The
hesitation margin is the function that expresses lack of knowledge of whether x ∈ X or
x /∈ X . Thus,

µA(x) + νA(x) + πA(x) = 1.

Definition 2.3 (Yager, 2013a, 2013b): Let X be a universal set. Then a Pythagorean
fuzzy set A which is a set of ordered pairs over X , is defined by

A = {⟨x, µA(x), νA(x)⟩ | x ∈ X}

or

A =

{⟨
µA(x), νA(x)

x

⟩∣∣∣∣x ∈ X

}
,

where the functions

µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively of the
element x ∈ X to A, which is a subset of X , and for every x ∈ X ,

0 ≤ (µA(x))
2 + (νA(x))

2 ≤ 1.

Supposing (µA(x))
2 + (νA(x))

2 ≤ 1, then there is a degree of indeterminacy of
x ∈ X to A defined by πA(x) =

√
1− [(µA(x))2 + (νA(x))2] and πA(x) ∈ [0, 1]. In

what follows, (µA(x))
2 + (νA(x))

2 + (πA(x))
2 = 1. Otherwise, πA(x) = 0 whenever

(µA(x))
2 + (νA(x))

2 = 1.
We denote the set of all PFSs over X by PFS(X).

Example 2.1: Let A ∈ PFS(X). Suppose µA(x) = 0.70 and νA(x) = 0.50 for
X = {x}. Clearly, 0.70 + 0.50 � 1, but 0.702 + 0.502 ≤ 1. Thus πA(x) = 0.5099, and
hence (µA(x))

2 + (νA(x))
2 + (πA(x))

2 = 1.

Table 1 explains the difference between Pythagorean fuzzy sets and intuitionistic fuzzy
sets (Ejegwa, 2018).

Table 1 Intuitionistic fuzzy sets and Pythagorean fuzzy sets

Intuitionistic fuzzy sets Pythagorean fuzzy sets

µ+ ν ≤ 1 µ+ ν ≤ 1 or µ+ ν ≥ 1

0 ≤ µ+ ν ≤ 1 0 ≤ µ2 + ν2 ≤ 1

π = 1− (µ+ ν) π =
√

1− [µ2 + ν2]

µ+ ν + π = 1 µ2 + ν2 + π2 = 1
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Definition 2.4 (Yager, 2013a): Let A,B ∈ PFS(X). Then A = B ⇔ µA(x) = µB(x)
and νA(x) = νB(x) ∀x ∈ X .

Definition 2.5 (Yager, 2013a, 2013b): Let A,B ∈ PFS(X). Then the following are
defined thus:

1 Ac = {⟨x, νA(x), µA(x)⟩|x ∈ X}.

2 A ∪B = {⟨x,max(µA(x), µB(x)),min(νA(x), νB(x))⟩|x ∈ X}.

3 A ∩B = {⟨x,min(µA(x), µB(x)),max(νA(x), νB(x))⟩|x ∈ X}.

4 A⊕B = {⟨x,
√

(µA(x))2 + (µB(x))2 − (µA(x))2(µB(x))2,
νA(x)νB(x)⟩|x ∈ X}.

5 A⊗B = {⟨x, µA(x)µB(x),√
(νA(x))2 + (νB(x))2 − (νA(x))2(νB(x))2⟩|x ∈ X}.

Remark 2.1: (Ejegwa, 2018): Let A,B,C ∈ PFS(X). By Definition 2.5, the following
properties hold:

1 Complementary property:

(Ac)c = A

2 Idempotent property:

A ∩A = A

A ∪A = A

A⊕A ̸= A

A⊗A ̸= A

3 Commutative property:

A ∩B = B ∩A

A ∪B = B ∪A

A⊕B = B ⊕A

A⊗B = B ⊗A

4 Associative property:

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∪ C) = (A ∪B) ∪ C

A⊕ (B ⊕ C) = (A⊕B)⊕ C

A⊗ (B ⊗ C) = (A⊗B)⊗ C
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5 Distributive property:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C)

A⊕ (B ∩ C) = (A⊕B) ∩ (A⊕ C)

A⊗ (B ∪ C) = (A⊗B) ∪ (A⊗ C)

A⊗ (B ∩ C) = (A⊗B) ∩ (A⊗ C)

6 De Morgan property:

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

(A⊕B)c = Ac ⊗Bc

(A⊗B)c = Ac ⊕Bc.

Definition 2.6: Let A ∈ PFS(X). Then the level/ground set of A is defined by

A∗ = {x ∈ X|µA(x) > 0, νA(x) < 1 ∀x}.

Certainly, A∗ is a subset of X .

3 Similarity measures for Pythagorean fuzzy sets

Similarity measure (SM) for PFSs is a dual concept of distance measure for PFSs
(Ejegwa, 2018). Firstly, we recall the axiomatic definition of similarity for Pythagorean
fuzzy sets.

Definition 3.1(Ejegwa, 2018): Let X be non-empty set and A,B,C ∈ PFS(X). The
similarity measure s between A and B is a function s : PFS × PFS → [0, 1] satisfies

1 0 ≤ s(A,B) ≤ 1 (boundedness)

2 s(A,B) = 1 iff A = B (separability)

3 s(A,B) = s(B,A) (symmetric)

4 s(A,C) + s(B,C) ≥ s(A,B) (triangle inequality).

Proposition 3.1 (Ejegwa, 2018): Let A,B,C ∈ PFS(X). Suppose A ⊆ B ⊆ C, then

1 d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C)

2 s(A,C) ≤ s(A,B) and s(A,C) ≤ s(B,C).
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Now, we state a new result on similarity measure for PFSs.

Proposition 3.2: If A,B,C ∈ PFS(X), such that A ⊆ B ⊆ C, then

s(A,C) ≤ min[s(A,B), s(B,C)].

Proof: Let A,B,C ∈ PFS(X). Assume that A ⊆ B ⊆ C, then by Proposition 3.1 we
have s(A,B) ≥ s(A,C) and s(B,C) ≥ s(A,C). Hence

s(A,C) ≤ min[s(A,B), s(B,C)].

�

By incorporating the three parameters of PFSs, the following similarity measures
for PFSs were proposed in Ejegwa (2018). Let A,B ∈ PFS(X) such that X =
{x1, ..., xn}, then

s1(A,B) = 1− 1

2n

n∑
i=1

[|µA(xi)− µB(xi)|

+ |νA(xi)− νB(xi)|
+ |πA(xi)− πB(xi)|],

s2(A,B) = 1− (
1

2n

n∑
i=1

[(µA(xi)− µB(xi))
2

+ (νA(xi)− νB(xi))
2

+ (πA(xi)− πB(xi))
2])

1
2 ,

s3(A,B) = 1− 1

2n

n∑
i=1

[|(µA(xi))
2 − (µB(xi))

2|

+ |(νA(xi))
2 − (νB(xi))

2|
+ |(πA(xi))

2 − (πB(xi))
2|]

3.1 Some new similarity measures for PFSs

We propose some new similarity measures for Pythagorean fuzzy sets, and exemplify
the measures to determine their compliant to Definition 3.1.

Let A,B ∈ PFS(X) such that X = {x1, ..., xn}. By incorporating the three
parameters of PFSs, we propose the following new similarity measures for PFSs:

s4(A,B) = 1− 1

4n

n∑
i=1

[|µA(xi)− µB(xi)|

+ ||µA(xi)− νA(xi)| − |µB(xi)− νB(xi)||
+ ||µA(xi)− πA(xi)| − |µB(xi)− πB(xi)||]
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s5(A,B) = 1− 1

4n

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+ |πA(xi)− πB(xi)|+ 2max{|µA(xi)− µB(xi)|,
|νA(xi)− νB(xi)|, |πA(xi)− πB(xi)|}]

s6(A,B) = 1−

(
1

4n

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))

2

+ (πA(xi)− πB(xi))
2 + 2max{(µA(xi)− µB(xi))

2,

(νA(xi)− νB(xi))
2, (πA(xi)− πB(xi))

2}]) 1
2

where

πA(xi) =
√
1− [(µA(xi))2 + (νA(xi))2]

and

πB(xi) =
√
1− [(µB(xi))2 + (νB(xi))2].

3.2 Numerical examples

We now verify whether these similarity measures satisfy the conditions in Definition 3.1
by using the examples in Ejegwa (2018).

Example 3.1 Let A,B,C ∈ PFS(X) for X = {x1, x2, x3}. Suppose

A =

{⟨
0.6, 0.2

x1

⟩
,

⟨
0.4, 0.6

x2

⟩
,

⟨
0.5, 0.3

x3

⟩}
,

B =

{⟨
0.8, 0.1

x1

⟩
,

⟨
0.7, 0.3

x2

⟩
,

⟨
0.6, 0.1

x3

⟩}
and

C =

{⟨
0.9, 0.2

x1

⟩
,

⟨
0.8, 0.2

x2

⟩
,

⟨
0.7, 0.3

x3

⟩}
.

Calculating the similarity using the proposed similarity measures above, we have

s4(A,B) = 1− 1

12

3∑
i=1

[|0.6− 0.8|+ ||0.6− 0.2| − |0.8− 0.1||

+ ||0.6− 0.7746| − |0.8− 0.5916||
+ |0.4− 0.7|+ ||0.4− 0.6| − |0.7− 0.3||
+ ||0.4− 0.6928| − |0.7− 0.6481||
+ |0.5− 0.6|+ ||0.5− 0.3| − |0.6− 0.1||
+ ||0.5− 0.8124| − |0.6− 0.7937||]

= 0.8505
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s5(A,B) = 1− 1

12

3∑
i=1

[|0.6− 0.8|+ |0.2− 0.1|+ |0.7746− 0.5916|

+ 2max{|0.6− 0.8|, |0.2− 0.1|, |0.7746− 0.5916|}
+ |0.4− 0.7|+ |0.6− 0.3|+ |0.6928− 0.6481|
+ 2max{|0.4− 0.7|, |0.6− 0.3|, |0.6928− 0.6481|}
+ |0.5− 0.6|+ |0.3− 0.1|+ |0.8124− 0.7937|
+ 2max{|0.5− 0.6|, |0.3− 0.1|, |0.8124− 0.7937|}]

= 0.7628

s6(A,B) = 1− (
1

12

3∑
i=1

[(0.6− 0.8)2 + (0.2− 0.)2 + (0.7746− 0.5916)2

+ 2max{(0.6− 0.8)2, (0.2− 0.1)2, (0.7746− 0.5916)2}
+ (0.4− 0.7)2 + (0.6− 0.3)2 + (0.6928− 0.6481)2

+ 2max{(0.4− 0.7)2, (0.6− 0.3)2, (0.6928− 0.6481)2}
+ (0.5− 0.6)2 + (0.3− 0.1)2 + (0.8124− 0.7937)2

+ 2max{(0.5− 0.6)2, (0.3− 0.1)2, (0.8124− 0.7937)2}]) 1
2

= 0.7662

Similarly, we obtain

s4(A,C) = 0.7952, s5(A,C) = 0.6706, s6(A,C) = 0.6654,

s4(B,C) = 0.8976, s5(B,C) = 0.8216, s6(B,C) = 0.8309.

Remark 3.1: From Example 3.1, we observe that

1 si(A,B), si(A,C), si(B,C) ∈ [0, 1] ∀i.

2) si(A,B) = si(A,C) = si(B,C) = 1 iff A = B = C ∀i.

3) si(A,B) = si(B,A), si(A,C) = si(C,A) and si(B,C) = si(C,B) ∀i.

4 si(A,C) + si(B,C) ≥ si(A,B) ∀i,

where i = 1, 2, 3, 4, 5, 6.

Clearly, conditions 1–4 of Definition 3.1 hold for all the similarity measures.
Table 2 contains all the values of the existing and the proposed similarity measures

using Example 3.1 via the three parameters approach.

Table 2 Numerical Outputs of Example 3.1

SM s1 s2 s3 s4 s5 s6

s(A,B) 0.7589 0.7706 0.7600 0.8505 0.7628 0.7662

s(A,C) 0.6702 0.6726 0.6100 0.7952 0.6706 0.6654

s(B,C) 0.8113 0.8368 0.8133 0.8976 0.8216 0.8309
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Howbeit, we consider a case where the level/ground sets of the PFSs are not equal, to
determine whether the similarities will satisfy the aforesaid conditions.

Example 3.2: Let A,B,C ∈ PFS(X) for X = {x1, x2, x3, x4, x5}. Suppose

A =

{⟨
0.6, 0.4

x1

⟩
,

⟨
0.5, 0.7

x2

⟩
,

⟨
0.8, 0.4

x3

⟩
,

⟨
0.7, 0.2

x5

⟩}
,

B =

{⟨
0.7, 0.3

x1

⟩
,

⟨
0.4, 0.7

x3

⟩
,

⟨
0.9, 0.2

x4

⟩}
and

C =

{⟨
0.6, 0.4

x2

⟩
,

⟨
0.7, 0.3

x3

⟩
,

⟨
0.5, 0.4

x4

⟩}
.

These PFSs could be rewritten thus:

A =

{⟨
0.6, 0.4

x1

⟩
,

⟨
0.5, 0.7

x2

⟩
,

⟨
0.8, 0.4

x3

⟩
,

⟨
0.0, 1.0

x4

⟩
,

⟨
0.7, 0.2

x5

⟩}
,

B =

{⟨
0.7, 0.3

x1

⟩
,

⟨
0.0, 1.0

x2

⟩
,

⟨
0.4, 0.7

x3

⟩
,

⟨
0.9, 0.2

x4

⟩
,

⟨
0.0, 1.0

x5

⟩}
and

C =

{⟨
0.0, 1.0

x1

⟩
,

⟨
0.6, 0.4

x2

⟩
,

⟨
0.7, 0.3

x3

⟩
,

⟨
0.5, 0.4

x4

⟩
,

⟨
0.0, 1.0

x5

⟩}
.

We rewrite the PFSs for easily calculations. Using the proposed similarity measures, we
obtain the following similarities;

s4(A,B) = 0.5634, s5(A,B) = 0.4054, s6(A,B) = 0.3855.

Similarly, we get

s4(A,C) = 0.5867, s5(A,C) = 0.3873, s6(A,C) = 0.3846,

and

s4(B,C) = 0.6142, s5(B,C) = 0.4968, s6(B,C) = 0.4625.

Remark 3.2: Although the level/ground sets of the PFSs considered here are not equal,
we get observations that coincide with Remark 3.1.

Table 3 contains all the values of the existing and the proposed similarity measures
using Example 3.2 via the three parameters approach.
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Table 3 Numerical outputs of Example 3.2

SM s1 s2 s3 s4 s5 s6

s(A,B) 0.3328 0.3602 0.4220 0.5634 0.4054 0.3855

s(A,C) 0.3070 0.3524 0.3620 0.5867 0.3873 0.3846

s(B,C) 0.4322 0.4345 0.4580 0.6142 0.4968 0.4625

3.3 Discussion

From Tables 2 and 3, it follows that the new similarity measures, s4, s5 and s6 satisfy
the conditions of Definition 3.1 and hence, they are appropriate similarity measures
for PFSs. Notwithstanding, the existing similarity measures, s1, s2 and s3 are certified
similarity measures for PFSs (Ejegwa, 2018).

Moreso, s4 is the most reasonable of the similarity measures discussed, because it
provides the greatest similarity when compare to the existing similarity measures for
PFSs that capture the three main parameters of PFSs. Clearly,

s4(A,B) > si(A,B),

s4(A,C) > si(A,C)

and

s4(B,C) > si(B,C) ∀i = 1, 2, 3, 5, 6.

Therefore, we adopt s4 for application to electoral process, career placement and disease
diagnosis, respectively.

4 Applicative examples

In this section, we provide some applications of Pythagoren fuzzy sets using s4 in the
areas of electoral process, career placement and disease diagnosis, respectively.

4.1 Application in electoral process

Suppose there are five provinces in a certain nation with electoral qualification
requirements for a position P represented by PFS

Ã =

{
⟨0.7, 0.2⟩

x1
,
⟨0.8, 0.1⟩

x2
,
⟨0.7, 0.1⟩

x3
,
⟨0.9, 0.0⟩

x4
,
⟨0.8, 0.2⟩

x5

}
,

where the five provinces are represented by

X = {x1(A), x2(B), x3(C), x4(D), x5(E)} .

Assume that four candidates C1, C2, C3 and C4 represented by PFSs B̃1, B̃2, B̃3 and
B̃4, respectively are vying for position P . After the voting process, the four candidates
gathered the following votes in Pythagorean fuzzy values as shown below:

B̃1 =

{
⟨0.5, 0.4⟩

x1
,
⟨0.8, 0.2⟩

x2
,
⟨0.4, 0.3⟩

x3
,
⟨0.6, 0.2⟩

x4
,
⟨0.7, 0.2⟩

x5

}
,
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B̃2 =

{
⟨0.8, 0.2⟩

x1
,
⟨0.6, 0.3⟩

x2
,
⟨0.6, 0.1⟩

x3
,
⟨0.3, 0.5⟩

x4
,
⟨0.8, 0.1⟩

x5

}
,

B̃3 =

{
⟨0.6, 0.3⟩

x1
,
⟨0.7, 0.3⟩

x2
,
⟨0.7, 0.2⟩

x3
,
⟨0.2, 0.6⟩

x4
,
⟨0.8, 0.2⟩

x5

}
,

B̃4 =

{
⟨0.7, 0.1⟩

x1
,
⟨0.8, 0.1⟩

x2
,
⟨0.5, 0.4⟩

x3
,
⟨0.8, 0.2⟩

x4
,
⟨0.5, 0.3⟩

x5

}
.

The collated result is determined by showing which of the candidates B̃i (i = 1, ..., 4)
has the greatest similarity value with respect to Ã.

The Pythagorean fuzzy values are gotten thus: let F (X) be the number of voters that
voted for, A(X) be the number of voters that voted against, and U(X) be the number
of voters that remained undecided or cast invalid votes in X . From the knowledge of
PFS, we have

µ(x) =
F (X)

X
and ν(x) =

A(X)

X
,

implying that

F (X) = µ(x)X andA(X) = ν(x)X.

Then

π(x) =

√
1−

[
(
F (X)

X
)2 + (

A(X)

X
)2
]
=

√
1−

[
F (X)2 +A(X)2

X2

]
=

√
X2 − F (X)2 −A(X)2

X
.

Thus,

U(X) =
√

X2 − F (X)2 −A(X)2 and π(x) =
U(X)

X
.

That is,

X =
√
F (X)2 +A(X)2 + U(X)2.

Now, we calculate the similarity between Ã and B̃i for (i = 1, ..., 4) as follows:

s4(Ã, B̃1) = 1− 1

20

5∑
i=1

[|µÃ(xi)− µB̃1
(xi)|

+||µÃ(xi)− νÃ(xi)| − |µB̃1
(xi)− νB̃1

(xi)||
+||µÃ(xi)− πÃ(xi)| − |µB̃1

(xi)− πB̃1
(xi)||]

= 0.8126.

Similarly,

s4(Ã, B̃2) = 0.8526, s4(Ã, B̃3) = 0.9049, s4(Ã, B̃4) = 0.8762.
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Table 4 Electoral results

s4 C1 C2 C3 C4

P 0.8126 0.8526 0.9049 0.8762

From the results in Table 4, candidate C3 will be declared winner of position P because
s4(Ã, B̃3) is the greatest of the similarities.

4.2 Application in career placement

Suppose three students S1, S2, and S3 represented by PFSs Ẽ1, Ẽ2, and Ẽ3 are vying to
study course C in a certain institution, wherein the subject requirements for admission
are represented by the set

X = {x1, x2, x3, x4, x5},

where x1 = English language, x2 = mathematics, x3 = physics, x4 = chemistry, and
x5 = biology.

The following Pythagorean fuzzy values are the scores of the students or applicants
after they sat for an examination over 100% of multi-choice questions on the listed
subjects, within a stipulated time.

Ẽ1 =

{
⟨0.6, 0.3⟩

x1
,
⟨0.5, 0.4⟩

x2
,
⟨0.6, 0.2⟩

x3
,
⟨0.5, 0.3⟩

x4
,
⟨0.5, 0.5⟩

x5

}
,

Ẽ2 =

{
⟨0.5, 0.3⟩

x1
,
⟨0.6, 0.2⟩

x2
,
⟨0.5, 0.3⟩

x3
,
⟨0.4, 0.5⟩

x4
,
⟨0.7, 0.2⟩

x5

}
,

Ẽ3 =

{
⟨0.7, 0.1⟩

x1
,
⟨0.6, 0.3⟩

x2
,
⟨0.7, 0.1⟩

x3
,
⟨0.5, 0.4⟩

x4
,
⟨0.4, 0.5⟩

x5

}
.

Assume the institution has a bench-mark for admission into studying C represented by
PFS D̃ as

D̃ =

{
⟨0.8, 0.1⟩

x1
,
⟨0.7, 0.2⟩

x2
,
⟨0.9, 0.0⟩

x3
,
⟨0.6, 0.3⟩

x4
,
⟨0.8, 0.1⟩

x5

}
.

Our task is to find which of the students Ẽi (i = 1, ..., 3) is suitable to study C from
the sense of similarity between Ẽi (i = 1, ..., 3) and D̃. Thus,

s4(D̃, Ẽ1) = 1− 1

20

5∑
i=1

[|µD̃(xi)− µẼ1
(xi)|

+||µD̃(xi)− νD̃(xi)| − |µẼ1
(xi)− νẼ1

(xi)||
+||µD̃(xi)− πD̃(xi)| − |µẼ1

(xi)− πẼ1
(xi)||]

= 0.8009.

Similarly,

s4(D̃, Ẽ2) = 0.8182, s4(D̃, Ẽ3) = 0.8314.

From the results in Table 5, we can see that s4(D̃, Ẽ3) > s4(D̃, Ẽ2) > s4(D̃, Ẽ1).
Hence, student S3 is the most suitable to study course C from the career placement
exercise.
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Table 5 Qualification results

s4 S1 S2 S3

C 0.8009 0.8182 0.8314

4.3 Application in disease diagnosis

Let us consider a set of diseases given as D = {D1, D2, D3, D4, D5}, where D1 =
viral fever, D2 = malaria fever, D3 = typhoid fever, D4 = stomach problem, and D5 =
chest problem; and a set of symptoms is thus:

X = {x1, x2, x3, x4, x5},

where x1 = temperature, x2 = headache, x3 = stomach pain, x4 = cough, and x5 =
chest pain.

Suppose a sample of a patient P is collected and analysed. Let us represent the
patient P laboratory result as an PFS F̃ given as

F̃ =

{
⟨0.8, 0.1⟩

x1
,
⟨0.6, 0.1⟩

x2
,
⟨0.2, 0.8⟩

x3
,
⟨0.6, 0.1⟩

x4
,
⟨0.1, 0.6⟩

x5

}
.

And then, let each of the diseases Di (i = 1, ..., 5) be viewed as PFSs

G̃1 =

{
⟨0.4, 0.0⟩

x1
,
⟨0.3, 0.5⟩

x2
,
⟨0.1, 0.7⟩

x3
,
⟨0.4, 0.3⟩

x4
,
⟨0.1, 0.7⟩

x5

}
,

G̃2 =

{
⟨0.7, 0.0⟩

x1
,
⟨0.2, 0.6⟩

x2
,
⟨0.0, 0.9⟩

x3
,
⟨0.7, 0.0⟩

x4
,
⟨0.1, 0.8⟩

x5

}
,

G̃3 =

{
⟨0.3, 0.3⟩

x1
,
⟨0.6, 0.1⟩

x2
,
⟨0.2, 0.7⟩

x3
,
⟨0.2, 0.6⟩

x4
,
⟨0.1, 0.9⟩

x5

}
,

G̃4 =

{
⟨0.1, 0.7⟩

x1
,
⟨0.2, 0.4⟩

x2
,
⟨0.8, 0.0⟩

x3
,
⟨0.2, 0.7⟩

x4
,
⟨0.2, 0.7⟩

x5

}
,

G̃5 =

{
⟨0.1, 0.8⟩

x1
,
⟨0.0, 0.8⟩

x2
,
⟨0.2, 0.8⟩

x3
,
⟨0.2, 0.8⟩

x4
,
⟨0.8, 0.1⟩

x5

}
.

Now, we calculate the similarity between F̃ and G̃i for (i = 1, ..., 5) as follows:

s4(F̃ , G̃1) = 1− 1

20

5∑
i=1

[|µF̃ (xi)− µG̃1
(xi)|

+||µF̃ (xi)− νF̃ (xi)| − |µG̃1
(xi)− νG̃1

(xi)||
+||µF̃ (xi)− πF̃ (xi)| − |µG̃1

(xi)− πG̃1
(xi)||]

= 0.8336.

Similarly,

s4(F̃ , G̃2) = 0.8686, s4(F̃ , G̃3) = 0.8316, s4(F̃ , G̃4) = 0.7817, s4(F̃ , G̃5) = 0.7827

From the results in Table 6, we can infer that patient P is suffering from malaria fever
since s4(F̃ , G̃2) is the greatest of the similarities.
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Table 6 Medical diagnostic results

s4 D1 D2 D3 D4 D5

P 0.8336 0.8686 0.8316 0.7817 0.7827

5 Conclusions

Motivated by the advantages of Pythagorean fuzzy environment having the ability to
represent uncertainty more reasonably than IFSs, in this paper, an attempt has been
made to propose some new similarity measures for PFSs. We have introduced some
new similarity measures for PFSs which satisfied the properties of similarity measure,
by taking into account the traditional parameters of PFSs. We verified the authenticity
of the proposed similarity measures with reference to some similarity measures for PFSs
that also used the three parameters characterisation of Pythagorean fuzzy sets, as studied
in Ejegwa (2018), and found that the proposed similarity measures, especially, s4 yields
better output. To test the applicability of the proposed similarity measures, some real-life
problems such as, career placement, electioneering process, and disease diagnosis were
considered via s4, for reliable output. The similarity measures introduced in this work
could be used as viable tools in applying PFSs to decision-making problems. From this
paper, it has been concluded that the proposed similarity measures for PFSs can easily
handle real-life decision-making problems and hence beneficial for system analysis,
decision science, etc. In the future, the proposed measures could be extended to different
environments such as linguistic single-valued neutrosophic sets, hesitant Pythagorean
fuzzy sets, complex intuitionistic fuzzy sets, among others, as seen in Garg (2019a),
Garg and Arora (2019), Garg and Nancy (2019) and Garg and Rani (2019b).
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