
Int. J. Fuzzy Computation and Modelling, Vol. 3, No. 1, 2020 33

Takagi-Sugeno fuzzy PID controllers:
mathematical models and stability analysis with
multiple fuzzy sets

Ritu Raj* and B.M. Mohan
Department of Electrical Engineering,
Indian Institute of Technology,
Kharagpur, 721 302, India
Email: riturajsam@gmail.com
Email: mohan@ee.iitkgp.ac.in
*Corresponding author

Abstract: This paper deals with nonlinear Takagi-Sugeno (TS) fuzzy PID
controllers with multiple fuzzy sets. Two models of fuzzy PID controllers
are proposed using algebraic product (AP) triangular norm, bounded sum
(BS)/maximum (Max) triangular co-norm and centre of gravity (CoG)
defuzzifier. The inputs are fuzzified by three or more fuzzy sets with
trapezoidal/triangular type membership functions. A new rule base is
proposed consisting of four rules which reduce the number of tunable
parameters. The models of the fuzzy PID controllers reveal that they are
(nonlinear) variable gain/structure controllers, i.e., the gains are a function of
input variables and the structure of the controller changes in the input space.
The variations of gain and the properties of the controllers are investigated.
The bounded-input bounded-output (BIBO) stability of the closed loop system
with one of the proposed models in the loop is studied. The applicability of
the controllers is demonstrated with the help of two examples.
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1 Introduction

With the introduction of fuzzy sets (Zadeh, 1965), fuzzy control attempts to design
controllers for complex and ill-defined systems. The algorithm to deal with these
complex systems was introduced by Zadeh (1973) where the control strategy is in the
form of IF-THEN statements. Human-like thinking and qualitative knowledge of the
processes are translated into the form of IF-THEN statements which decide the control
strategy. Two types of Fuzzy Logic Control (FLC) exist in the literature: Mamdani type
(Mamdani, 1974) and Takagi-Sugeno (TS) type (Takagi and Sugeno, 1985). Mamdani
type FLC employs fuzzy sets whereas Takagi-Sugeno type FLC uses linear functions
of the input variables in the rule consequent part. FLC is an active area of research
and has many practical applications in industrial processes. For example, control of
a cryogenic process (Santos and Dexter, 2002), unbalance compensation in an active
magnetic bearing (Chen et al., 2009), and antilock braking systems (Sharkawy, 2010).

Conventional PID controllers are still prevalent in the industry due to its ease of
operation and low cost of implementation. The linear controllers operate well on linear
processes and lower order plants. The problem arises when complex nonlinear processes
with higher order need to be controlled. FLC provides an alternative solution to this. The
analysis and design of FLC requires the knowledge of its structure which is generally
not available. Also, the fuzzy controllers do not have a single fixed model as it depends
on various factors such as rule base, triangular norms and co-norms and fuzzification
and defuzzification strategies. Stability analysis and design become convenient once the
model of the controller is known.

Some historical developments in the area of fuzzy control are presented here.
Modelling, identification and control of complex systems using fuzzy logic was
introduced by Zadeh (1994). In the literature, several papers dealing with Mamdani type
fuzzy PID controllers (Mizumoto, 1995; Misir et al., 1996; Kim and Oh, 2000; Mohan
and Sinha, 2006, 2008a, 2008b) were reported whereas a limited number of papers was
available for TS type fuzzy PID controllers (Ying, 2000; Mohan, 2011; Raj and Mohan,
2017). PID controllers (Mizumoto, 1995) were realised by ‘product-sum-gravity’ method
and ‘simplified fuzzy reasoning’ method. The design, tracking performance and stability
analysis of fuzzy PI+D controller was studied in Misir et al. (1996). The fuzzy PI and
fuzzy D controllers were designed separately and the overall control law was obtained
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by algebraically combining the individual control laws. In Kim and Oh (2000), a
nonlinear fuzzy PID control method was proposed to improve the transient responses of
nonlinear systems. Thirteen different classes of fuzzy controllers of Mamdani type were
derived in Mohan and Sinha (2006) and five different classes of fuzzy controllers of
Mamdani type were derived and proved (Mohan and Sinha, 2008b) to be unsuitable for
control application. Analytical structure of the simplest fuzzy PID controller was derived
(Mohan and Sinha, 2008a) using Mamdani minimum inference method and centre of
sums defuzzification method. The explicit structure of TS type fuzzy PID controller was
derived (Ying, 2000) using simplified linear control rules. A modified rule base was
proposed (Mohan, 2011) for the TS fuzzy PID controller and models were developed
using AP triangular norm and BS triangular co-norm. Very recently, two models of the
simplest TS fuzzy PID controller were derived (Raj and Mohan, 2017) using only two
fuzzy sets and the modified rule base, and it was shown that the controller models in
Mohan (2011) are a special case of the derived models. In the literature several design
methods (Tanaka and Wang, 2001) for TS fuzzy controllers have been reported. A
function-based evaluation approach (Hu et al., 2001) has been proposed while addressing
the issues of simplicity and nonlinearity of fuzzy PID controllers. In Foulloy and
Galichet (2003), two types of fuzzy inputs were presented and their use in FLCs was
discussed. An implementation of fuzzy predictive functional control on an open-loop
unstable process was presented in Lepetic et al. (2003). A magnetic suspension system
was considered and a lead compensator was used to stabilise it. An adaptive PID
controller design based on fuzzy models was proposed (Savran and Kahraman, 2014)
for uncertain systems. The fuzzy models of the processes were constructed from the
measured input-output data.

Stability is one of the major concerns while designing a controller. The analytical
structures of controllers help in establishing stability criteria which guarantee the
stability of the closed-loop system. Several attempts have been made in this direction
so far. Lyapunov’s direct method was applied to establish a sufficient condition (Tanaka
and Sugeno, 1992; Chen et al., 1993) for stability of a fuzzy system. The stability
result was then employed for the design of fuzzy controllers. Stability region of PID
parameters was derived and hence a sufficient condition was obtained for a stable fuzzy
controller using the passivity theorem (Sio and Lee, 1998). Sufficient conditions were
established using circle criterion (Cao et al., 2011) for global asymptotic stability of the
simplest TS fuzzy control systems. Sufficient conditions for BIBO stability of nonlinear
feedback systems were derived using the small gain theorem (Chou et al., 2015).

It seems from the literature that generalised structure of the fuzzy PID controller
is not investigated. So an attempt has been made to generalise TS type fuzzy PID
controllers using multiple fuzzy sets, i.e., the number of fuzzy sets is user defined
whereas in Raj and Mohan (2017) there is no such flexibility as the number of fuzzy
sets is fixed. We have considered fuzzy sets with trapezoidal membership functions
which can be modified to triangular form if required. A new TS rule base is introduced
and applied to develop mathematical models of TS type fuzzy PID controllers by
considering different universes of discourse (UoD) for all three input variables and
using AP triangular norm and BS/Max triangular co-norm. The rule base consists of
four general rules. The rule base is constructed in such a manner to reduce the number
of tunable parameters. Two classes of fuzzy PID controllers of TS type are proposed.
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Explicit structures of the fuzzy controllers are derived. It is shown that the fuzzy PID
controllers are (nonlinear) variable gain/structure controllers. Also, the issue of stability
is addressed using the small gain theorem (Khalil, 2015). A sufficient condition for the
BIBO stability of a closed loop system with one of the proposed controllers in the loop
is established. Two examples of nonlinear processes are considered for simulation study
which demonstrates the applicability of the proposed fuzzy PID controllers.

Rest of the paper is organised as follows: The configuration of TS fuzzy PID
controllers is discussed in Section 2. In Section 3, the analytical structures and properties
of TS fuzzy PID controllers are presented. The stability of fuzzy control systems is
investigated in Section 4. Simulations have been carried out in Section 5. The final
section concludes the paper.

2 Principle components of fuzzy PID controllers

A typical block diagram of a closed-loop system with a continuous-time (CT) plant is
shown in Figure 1. The incremental output of a discrete-time linear PID controller is
given by

∆u(k) = KP∆e(k) +KIe(k) +KD∆2e(k) (1)

where e(k), ∆e(k) and ∆2e(k) are error, change of error and double change of
error, respectively, and are defined as e(k) = r(k)− y(k), ∆e(k) = e(k)− e(k − 1)
and ∆2e(k) = ∆e(k)−∆e(k − 1). r(k) and y(k) are the reference command and
process output at kth instant, respectively. The inputs of the PID controller are shown
in Figure 2. The overall control effort is given by u(k) = u(k − 1) + ∆u(k).

Figure 1 A typical closed-loop control system

Figure 2 Inputs of PID controller

The principle structure of fuzzy PID controller is shown in Figure 3. ∆u(k), ∆us(k)
and S∆u are the incremental controller output, scaled version of incremental controller
output and the output scaling factor, respectively.
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Figure 3 Fuzzy PID controller

2.1 Fuzzification

The inputs e(k), ∆e(k) and ∆2e(k) are fuzzified by N1, N2 and N3 fuzzy sets with
trapezoidal membership functions as shown in Figure 4. We consider J1, J2 and J3
number of fuzzy sets on negative e(k), ∆e(k) and ∆2e(k) respectively, one fuzzy set
for near zero on each of e(k), ∆e(k) and ∆2e(k), and J1, J2 and J3 number of fuzzy
sets on positive e(k), ∆e(k) and ∆2e(k) respectively. So we have N1 = 2J1 + 1, N2 =
2J2 + 1 and N3 = 2J3 + 1 with J1, J2, J3 ≥ 1. 2B1, 2B2, 2B3 and 2A1, 2A2, 2A3

are the lower and upper sides of trapezoidal membership functions for e(k), ∆e(k),
∆2e(k), respectively. The trapezoidal membership functions reduce to triangular ones
if A1 = A2 = A3 = 0. Uniform distribution of fuzzy sets is considered over [−L1, L1]
for e(k), over [−L2, L2] for ∆e(k), and over [−L3, L3] for ∆2e(k), where L1, L2,
and L3 are the design parameters. The central value W1(W2,W3) of the first fuzzy set
on e(k)(∆e(k),∆2e(k)) is given by W1 = A1 +B1(W2 = A2 +B2,W3 = A3 +B3).
The mathematical description of membership functions of ith, jth, and kth fuzzy sets on
e(k), ∆e(k), and ∆2e(k), respectively, is given by

µi(e) =


e(k)− iW1 +B1

B1 −A1
, iW1 −B1 ≤ e(k) ≤ iW1 −A1

1, iW1 −A1 ≤ e(k) ≤ iW1 +A1

−e(k) + iW1 +B1

B1 −A1
, iW1 +A1 ≤ e(k) ≤ iW1 +B1

µj(∆e) =


∆e(k)− jW2 +B2

B2 −A2
, jW2 −B2 ≤ ∆e(k) ≤ jW2 −A2

1, jW2 −A2 ≤ ∆e(k) ≤ jW2 +A2

−∆e(k) + jW2 +B2

B2 −A2
, jW2 +A2 ≤ ∆e(k) ≤ jW2 +B2

µk(∆
2e) =


∆2e(k)− kW3 +B3

B3 −A3
, kW3 −B3 ≤ ∆2e(k) ≤ kW3 −A3

1, kW3 −A3 ≤ ∆2e(k) ≤ kW3 +A3

−∆2e(k) + kW3 +B3

B3 −A3
, kW3 +A3 ≤ ∆2e(k) ≤ kW3 +B3
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The description of membership functions of negative and positive fuzzy sets J1, J2 and
J3 on e(k), ∆e(k) and ∆2e(k) is as follows:

µ−J1(e) =

1, −L1 ≤ e(k) ≤ −l1 +A1

−e(k)− l1 +B1

B1 −A1
, −l1 +A1 ≤ e(k) ≤ −l1 +B1

µJ1(e) =


e(k)− l1 +B1

B1 −A1
1−B1 ≤ e(k) ≤ l1 −A1

1, l1 −A1 ≤ e(k) ≤ L1

µ−J2(∆e) =

1, −L2 ≤ ∆e(k) ≤ −l2 +A2

−∆e(k)− l2 +B2

B2 −A2
, −l2 +A2 ≤ ∆e(k) ≤ −l2 +B2

µJ2(∆e) =


∆e(k)− l2 +B2

B2 −A2
, l2 −B2 ≤ ∆e(k) ≤ l2 −A2

1, l2 −A2 ≤ ∆e(k) ≤ L2

µ−J3(∆
2e) =

1, −L3 ≤ ∆2e(k) ≤ −l3 +A3

−∆2e(k)− l3 +B3

B3 −A3
, −l3 +A3 ≤ ∆2e(k) ≤ −l3 +B3

µJ3
(∆2e) =


∆2e(k)− l3 +B3

B3 −A3
, l3 −B3 ≤ ∆2e(k) ≤ l3 −A3

1, l3 −A3 ≤ ∆2e(k) ≤ L3

where l1 = J1W1, l2 = J2W2, and l3 = J3W3. Also,

µi(e) + µi+1(e) = 1 for − L1 ≤ e(k) ≤ L1,

µj(∆e) + µj+1(∆e) = 1 for − L2 ≤ ∆e(k) ≤ L2 and
µk(∆

2e) + µk+1(∆
2e) = 1 for − L3 ≤ ∆2e(k) ≤ L3.

Figure 4 Fuzzy sets with their membership functions on input variables
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2.2 Rule base

N1.N2.N3 control rules are required to cover N1 ×N2 ×N3 possible combinations of
the input fuzzy sets. The rule base consists of four rules as follows:

r1 IF e(k) is Ei AND ∆e(k) is ∆Ej AND ∆2e(k) is ∆2Ek THEN
∆u1(k) = a|i+j+k|e(k) + b|i+j+k|∆e(k) + c|i+j+k|∆

2e(k)

r2 IF (e(k) is Ei+1 AND ∆e(k) is ∆Ej AND ∆2e(k) is ∆2Ek) OR (e(k) is Ei

AND ∆e(k) is ∆Ej+1 AND ∆2e(k) is ∆2Ek) OR (e(k) is Ei AND ∆e(k) is
∆Ej AND ∆2e(k) is ∆2Ek+1) THEN
∆u2(k) = a|i+j+k+1|e(k) + b|i+j+k+1|∆e(k) + c|i+j+k+1|∆

2e(k)

r3 IF (e(k) is Ei+1 AND ∆e(k) is ∆Ej+1 AND ∆2e(k) is ∆2Ek) OR (e(k) is
Ei+1 AND ∆e(k) is ∆Ej AND ∆2e(k) is ∆2Ek+1) OR (e(k) is Ei AND
∆e(k) is ∆Ej+1 AND ∆2e(k) is ∆2Ek+1) THEN
∆u3(k) = a|i+j+k+2|e(k) + b|i+j+k+2|∆e(k) + c|i+j+k+2|∆

2e(k)

r4 IF e(k) is Ei+1 AND ∆e(k) is ∆Ej+1 AND ∆2e(k) is ∆2Ek+1 THEN
∆u4(k) = a|i+j+k+3|e(k) + b|i+j+k+3|∆e(k) + c|i+j+k+3|∆

2e(k)

where ∆u1,∆u2, ∆u3 and ∆u4 represent the incremental control outputs of PID
controller for rules r1, r2, r3 and r4, respectively, and ai,j,k, bi,j,k and ci,j,k are design
parameters for i = −J1, ...,−1, 0, 1, ..., J1 − 1, j = −J2, ...,−1, 0, 1, ..., J2 − 1 and
k = −J3, ...,−1, 0, 1, ..., J3 − 1.

Justification: In the literature, the rule base for fuzzy PID controller consists of eight
rules (Ying, 2000; Mohan and Sinha, 2006, 2008a, 2008b). Now, considering the
Mamdani rule base in Mohan and Sinha (2008a), we have

R1 IF dN is n.d AND vN is n.v AND aN is n.a THEN ∆us is O−2

R2 IF dN is p.d AND vN is n.v AND aN is n.a THEN ∆us is O−1

R3 IF dN is n.d AND vN is p.v AND aN is n.a THEN ∆us is O−1

R4 IF dN is n.d AND vN is n.v AND aN is p.a THEN ∆us is O−1

R5 IF dN is p.d AND vN is p.v AND aN is n.a THEN ∆us is O+1

R6 IF dN is p.d AND vN is n.v AND aN is p.a THEN ∆us is O+1

R7 IF dN is n.d AND vN is p.v AND aN is p.a THEN ∆us is O+1

R8 IF dN is p.d AND vN is p.v AND aN is p.a THEN ∆us is O+2.

Here, we can see that rules R2, R3 and R4 have the same consequent part. Similarly,
R5, R6 and R7 also have the same consequent. So we merge rules R2, R3 and R4 into
r2 and rules R5, R6 and R7 into r3 of the proposed rule base. So the proposed rule
base consists of only four rules. From Figure 4, one can find that the fuzzy sets on the
negative x-axis are the mirror image of the fuzzy sets on the positive x-axis. So based
on this symmetric arrangement of the fuzzy sets, we introduce the modulus operator
in the subscript of the rule consequent parameters. The modified rule base having four
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rules helps in reducing the number of tunable parameters and thereby the complexity of
the controller. The total number of tunable parameters is given by 3(J1 + J2 + J3 + 1).

Triangular norms and co-norms are mathematical operations that provide
logical conjunction (AND) and disjunction (OR), respectively. T-norm is a
mapping t : [0, 1] X [0, 1] → [0, 1] ∀ x, y, x′, y′, z ∈ [0, 1] that satisfies boundary
conditions: t(x, 0) = 0, t(x, 1) = x, commutativity property: t(x, y) = t(y, x),
monotonicity property: (x ≤ x′, y ≤ y′) → t(x, y) ≤ t(x′, y′), and associativity
property: t(t(x, y), z) = t(x, t(y, z)). T-conorm (or s-norm) is a mapping that satisfies
boundary conditions: s(x, 0) = x, s(x, 1) = 1, and commutativity, monotonicity and
associativity properties. In this work, we have considered AP t-norm and BS/Max
t-conorm as the AND and OR operators. They are defined as follows:

Algebraic product (AP): t(µA(x), µB(y)) = µA(x)µB(y)

Bounded sum (BS): s1(µA(x), µB(y)) = min(1, µA(x) + µB(y))

Maximum (Max): s2(µA(x), µB(y)) = max(µA(x), µB(y))

Note that s2 ≤ s1.

Figure 5 Representation of 3-dimensional input space into 2-dimensional planes,
(a) e(k)−∆e(k) plane (b) ∆e(k)−∆2e(k) plane (c) ∆2e(k)− e(k) plane
(inner regions)

(a) (b)

(c)
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Two classes of controllers are defined using the combinations of t-norm and t-co-norms:

Class 1 with t and s1

Class 2 with t and s2.

Figure 6 Representation of 3-dimensional input space into 2-dimensional planes,
(a) e(k)−∆e(k) plane (b) ∆e(k)−∆2e(k) plane (c) ∆2e(k)− e(k) plane
(outer regions)

(a) (b)

(c)

The inputs form a 3-dimensional space. To visualise the 3D space clearly, we have
drawn 2D planes as shown in Figures 5 and 6. Now any point in this 3D space can be
located by taking its projections on e−∆e, ∆e−∆2e and ∆2e− e planes. So a point,
say (e∗,∆e∗,∆2e∗), can be located uniquely in the 3D space by a triplet (n1, n2, n3),
called a cell, where n1, n2, n3 = 1, 2, ..., 20, I, II, ..., XX as shown in Figures 5 and 6.
A cell is said to be valid if the relation between e and ∆e in Figure 5(a) [or Figure 6(a)]
and the relation between ∆e and ∆2e in Figure 5(b) [or Figure 6(b)] produce the relation
between ∆2e and e in Figure 5(c) [or Figure 6(c)]. For example, the triplet (13, 14,
16) denotes a valid cell with 13 taken from Figure 5(a), 14 taken from Figure 5(b) and
16 taken from Figure 5(c). Similarly, a triplet (II, XV,XIV) denotes a valid cell with II
taken from Figure 6(a), XV taken from Figure 6(b) and XIV taken from Figure 6(c).
A cell defines the space where the input variables lie. The control rules are applied in
each cell to obtain the corresponding control law. The rule base consists of two parts –
antecedent part and consequent part. The antecedent part of the rule base is evaluated
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and tabulated in Tables 1–3. Some cells are clubbed together in the form of regions as
their resultant membership functions are the same.

Table 1 Resultant membership functions in outer regions for both the classes of controllers

Regions CELLS µ1 µ2 µ3 µ4

1 (I,II,III), (I,XV,XVII), (II,III,I), (II,XVI,XIII),
(III,I,II), (III,XX,XIV), (XIII,II,XVI),

(XIV,III,XX), (XV,XVII,I), (XVI,XIII,II),
(XVII,I,XV), (XX,XIV,III)

0 1 0 0

2 (I,III,IV), (I,XVI,XVIII), (III,IV,I), (III,XIX,XIII),
(IV,I,III), (IV,XX,XVII), (XIII,III,XIX),

(XIV,XVIII,I), (XVII,IV,XX), (XVIII,I,XVI),
(XIX,XIII,III), (XX,XVII,IV)

0 0 1 0

3 (II,II,II), (II,XV,XIV), (XIV,II,XX), (XV,XIV,II) 1 0 0 0
4 (IV,IV,IV), (IV,XIX,XIV), (XVIII,IV,XIX),

(XIX,XVIII,IV)
0 0 0 1

5 (I,VII,IX), (I,VIII,X), (III,XI,V), (III,XII,VI) 0 µ−J3 µJ3 0
6 (II,VII,VI), (II,VIII,V) µ−J3 µJ3 0 0
7 (IV,XI,X), (IV,XII,IX) 0 0 µ−J3 µJ3

8 (V,II,VIII), (VI,II,VII) µ−J1 µJ1 0 0
9 (V,III,XI), (VI,III,XII), (IX,I,VII), (X,I,VIII) 0 µ−J1 µJ1 0
10 (VII,VI,II), (VIII,V,II) µ−J2 µJ2 0 0
11 (VII,IX,I), (VIII,X,I), (XI,V,III), (XII,VI,III) 0 µ−J2 µJ2 0
12 (IX,IV,XII), (X,IV,XI) 0 0 µ−J1 µJ1

13 (XI,X,IV), (XII,IX,IV) 0 0 µ−J2 µJ2

2.3 Defuzzification

A defuzzification interface converts the conclusions of the inference mechanism into
actual inputs to the process. It provides a means to choose a single output from the
overall output generated by the control rules.

A typical fuzzy rule in a first-order TS fuzzy model has the form

IF x is Ai AND y is Bi THEN zi = pix+ qiy

where A and B are the fuzzy sets in the antecedent, while zi = pix+ qiy is a crisp
function in the consequent. Since each rule has a crisp output, the final output z inferred
from n implications is given as the average of all zi with the weights µi:

z =

n∑
i=1

µi · zi

n∑
i=1

µi



Takagi-Sugeno fuzzy PID controllers 43

where µi = µAi(x).µBi(y). Notice that zi is a linear mapping. We see that the TS fuzzy
system performs a nonlinear interpolation between linear mappings. As an example,
suppose that n = 2, and that we have the rules

IF x is A1 THEN z1 = p1x

IF x is A2 THEN z2 = p2x

with the UoD for x given in Figure 7 so that µ1 and µ2 represent A1 and A2. We have

z =
µ1z1 + µ2z2
µ1 + µ2

= µ1z1 + µ2z2

as µ1 + µ2 = 1. We see that for x > 1, µ1 = 0 and µ2 = 1, so z = z2 = p2x which
is a straight line. If x < −1, µ1 = 1 and µ2 = 0, so z = z1 = p1x which is another
straight line as p1 ̸= p2. For −1 ≤ x ≤ 1, the output z is an interpolation between the
two straight lines. Figure 8 shows how this interpolation is achieved. Thus, in general,
the TS fuzzy system provides an intuitive representation of a nonlinear system as a
nonlinear interpolation between n linear mappings.

Figure 7 Membership functions for TS fuzzy system example

Figure 8 Interpolator between linear mappings (see online version for colours)
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Table 2 Resultant membership functions in inner regions for class 1 controller

Re
gi
on

s
C
EL

LS
µ
1

µ
2

µ
3

µ
4

1
(1
,2
,3
),
(2
,3
,1
),
(3
,1
,2
)

0
1

0
0

2
(1
,3
,4
),
(3
,4
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Table 3 Resultant membership functions in inner regions for class 2 controller
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We apply the above weighted average defuzzification method to obtain the expression
for crisp incremental control output, given by

∆us(k) =

4∑
l=1

µl(∆u) ·∆ul(k)

4∑
l=1

µl(∆u)

=

4∑
l=1

µl(∆u)
[
a|i+j+k+l−1|e(k)

+b|i+j+k+l−1|∆e(k) + c|i+j+k+l−1|∆2e(k)
]

4∑
l=1

µl(∆u)

(2)

The output of the TS fuzzy PID controller is obtained by u(k) = u(k − 1) + ∆u(k).

3 Analytical structures and properties of TS fuzzy PID controllers

The models of the general TS fuzzy PID controller are derived in this section. The
input-output structural relationship of the TS fuzzy PID controller takes the following
form:

∆us(k) = γ1(ẽ(k),∆ẽ(k),∆2ẽ(k)) · e(k) + γ2(ẽ(k),∆ẽ(k),∆2ẽ(k)) ·∆e(k)

+ γ3(ẽ(k),∆ẽ(k),∆2ẽ(k)) ·∆2e(k)
(3)

where ẽ(k) = e(k)− (i+ 0.5)W1, ∆ẽ(k) = ∆e(k)− (j + 0.5)W2, ∆2ẽ(k) =
∆2e(k)− (k + 0.5)W3, and γ1(.), γ2(.), and γ3(.) are the variable gains of the
fuzzy controller. On comparing with the expression of linear PID controller given
in equation (1), we can say that γ1(ẽ(k),∆ẽ(k),∆2ẽ(k)) is variable integral gain,
γ2(ẽ(k),∆ẽ(k),∆2ẽ(k)) is variable proportional gain, and γ3(ẽ(k),∆ẽ(k),∆2ẽ(k)) is
variable derivative gain. The exact expressions for these gains have been derived for
the general TS fuzzy PID controllers.

When the inputs e(k), ∆e(k) and ∆2e(k) lie within [−l1, l1], [−l2, l2], and
[−l3, l3], respectively, at any sampling instant k, the input variables must satisfy iW1 ≤
e(k) ≤ (i+ 1)W1, jW2 ≤ ∆e(k) ≤ (j + 1)W2, and kW3 ≤ ∆e(k) ≤ (k + 1)W3. This
is shown in Figure 5. The analytical structure has been computed using the outcomes
of the rule premise parts and is tabulated in Tables 4 and 5. The expressions of θ1, θ2
and θ3 in Tables 4 and 5 are given by

θ1 = 0.5(2B1 −W1) = 0.5(B1 −A1)

θ2 = 0.5(2B2 −W2) = 0.5(B2 −A2)

θ3 = 0.5(2B3 −W3) = 0.5(B3 −A3)
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Table 4 Expressions of gains in inner regions for class 1 controller

Regions γ1(ẽ,∆ẽ,∆2ẽ), γ2(ẽ,∆ẽ,∆2ẽ), γ3(ẽ,∆ẽ,∆2ẽ)

1, 2 C2

3, 4 C1

5, 6, 7 (θ3−∆2ẽ)C2+(θ3+∆2ẽ)C3
2θ3

8, 9, 12 (θ1−ẽ)C2+(θ1+ẽ)C3
2θ1

10, 11, 13 (θ2−∆ẽ)C2+(θ2+∆ẽ)C3
2θ2

14, 16 ẽ∆2ẽ(C1−2C2+C3)+(θ1∆
2ẽ+θ3ẽ)(−C1+C3)+θ1θ3(C1+2C2+C3)

4θ1θ3

15, 17 ∆ẽ∆2ẽ(C1−2C2+C3)+(θ2∆
2ẽ+θ3∆ẽ)(−C1+C3)+θ2θ3(C1+2C2+C3)

4θ2θ3

18, 19 ẽ∆ẽ(C1−2C2+C3)+(θ1∆ẽ+θ2ẽ)(−C1+C3)+θ1θ2(C1+2C2+C3)
4θ1θ2

20

[ẽ∆ẽ∆2ẽ(−C1 + 3C2 − 3C3 + C4)

+(θ1∆ẽ∆2ẽ + θ2ẽ∆
2ẽ + θ3ẽ∆ẽ)(C1 − C2 − C3 + C4)

+(θ1θ2∆
2ẽ + θ2θ3ẽ + θ1θ3∆ẽ)(−C1 − C2 + C3 + C4)

+ θ1θ2θ3(C1 + 3C2 + 3C3 + C4)]

8θ1θ2θ3

Table 5 Expressions of gains in inner regions for class 2 controller

Regions γ1(ẽ∆ẽ∆2ẽ), γ2(ẽ∆ẽ∆2ẽ), γ3(ẽ∆ẽ∆2ẽ)

1–13 Same as in Table 4
14; 15, 19; 18 ẽ∆2ẽ(C1−C2+C3)+θ1∆

2ẽ(−C1∓C2+C3)+θ3ẽ(−C1±C2+C3)+θ1θ3(C1+C2+C3)

ẽ∆2ẽ∓θ1∆2ẽ±θ3ẽ+3θ1θ3

16; 17, 20; 21 ∆ẽ∆2ẽ(C1−C2+C3)+θ2∆
2ẽ(−C1∓C2+C3)+θ3∆ẽ(−C1±C2+C3)+θ2θ3(C1+C2+C3)

∆ẽ∆2ẽ∓θ2∆2ẽ±θ3∆ẽ+3θ2θ3

22; 24, 23; 25 ẽ∆ẽ(C1−C2+C3)+θ1∆ẽ(−C1∓C2+C3)+θ2ẽ(−C1±C2+C3)+θ1θ2(C1+C2+C3)
ẽ∆ẽ∓θ1∆ẽ±θ2ẽ+3θ1θ2

26; 31

ẽ∆ẽ∆2ẽ(−C1 + C2 − C3 + C4) + θ1∆ẽ∆2ẽ(C1 ± C2 ∓ C3 + C4)

+θ2ẽ∆
2ẽ(C1 − C2 − C3 + C4) + θ3ẽ∆ẽ(C1 ∓ C2 ± C3 + C4)

+θ1θ2∆
2ẽ(−C1 ∓ C2 ∓ C3 + C4) + θ2θ3ẽ(−C1 ± C2 ± C3 + C4)

+ θ1θ3∆ẽ(−C1 − C2 + C3 + C4) + θ1θ2θ3(C1 + C2 + C3 + C4)

2(θ1∆ẽ∆2ẽ + θ3ẽ∆ẽ ∓ θ1θ2∆2ẽ ± θ2θ3ẽ + 2θ1θ2θ3)

27; 29

ẽ∆ẽ∆2ẽ(−C1 + C2 − C3 + C4) + θ1∆ẽ∆2ẽ(C1 ± C2 ∓ C3 + C4)

+θ2ẽ∆
2ẽ(C1 ∓ C2 ± C3 + C4) + θ3ẽ∆ẽ(C1 − C2 − C3 + C4)

+θ1θ2∆
2ẽ(−C1 − C2 + C3 + C4) + θ2θ3ẽ(−C1 ± C2 ± C3 + C4)

+ θ1θ3∆ẽ(−C1 ∓ C2 ∓ C3 + C4) + θ1θ2θ3(C1 + C2 + C3 + C4)

2(θ1∆ẽ∆2ẽ + θ2ẽ∆2ẽ ± θ2θ3ẽ ∓ θ1θ3∆ẽ + 2θ1θ2θ3)

28; 30

ẽ∆ẽ∆2ẽ(−C1 + C2 − C3 + C4) + θ1∆ẽ∆2ẽ(C1 − C2 − C3 + C4)

+θ2ẽ∆
2ẽ(C1 ∓ C2 ± C3 + C4) + θ3ẽ∆ẽ(C1 ± C2 ∓ C3 + C4)

+θ1θ2∆
2ẽ(−C1 ± C2 ± C3 + C4) + θ2θ3ẽ(−C1 − C2 + C3 + C4)

+ θ1θ3∆ẽ(−C1 ∓ C2 ∓ C3 + C4) + θ1θ2θ3(C1 + C2 + C3 + C4)

2(θ2ẽ∆2ẽ + θ3ẽ∆ẽ ± θ1θ2∆2ẽ ∓ θ1θ3∆ẽ + 2θ1θ2θ3)

Note: In Table 5, the meaning of ± and ∓ in regions r1; r2 – the top sign is for
region r1 and the bottom sign is for region r2.

Similarly, the case when the inputs e(k), ∆e(k), ∆2e(k) lie outside [−l1, l1], [−l2, l2],
[−l3, l3], respectively, is depicted in Figure 6. The analytical structure has been
computed in the outer regions using the outcomes of the rule premise parts. The
expressions of gains γ1(.), γ2(.), and γ3(.) in outer regions 1–13 are computed and
are tabulated in Table 6 for both the classes of controllers. The values of coefficients
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C1, C2, C3, and C4 for class 1 and class 2 PID controllers are given in Table 7. It is
evident from Tables 4–6 that the gains γ1(.), γ2(.), and γ3(.) are nonlinear functions
of the inputs. Also, one can notice that the structure of the controller varies from one
region to the other. So the general TS fuzzy PID controllers are variable gain/structure
controllers.

Note: For triangular membership functions A1 = A2 = A3 = 0. Hence the
expressions of gains in Tables 4 and 5 can be modified accordingly.

Table 6 Expressions of gains in outer regions for both classes of controllers

Region γ1(ẽ,∆ẽ,∆2ẽ), γ2(ẽ,∆ẽ,∆2ẽ), γ3(ẽ,∆ẽ,∆2ẽ)

1, 2 C2

3, 4 C1

5, 6, 7 (B3 − l3 −∆2e)C2 + (B3 − l3 +∆2e)C3

2(B3 − l3)

8, 9, 12 (B1 − l1 − e)C2 + (B1 − l1 + e)C3

2(B1 − l1)

10, 11, 13 (B2 − l2 −∆e)C2 + (B2 − l2 +∆e)C3

2(B2 − l2)

Table 7 Coefficients for class 1 and class 2 controllers

Regions class 1
controller

Regions class 2
controller

γ1(ẽ∆ẽ∆2ẽ), γ2(ẽ∆ẽ∆2ẽ), γ3(ẽ∆ẽ∆2ẽ)

C1 C2 C3 C4

1, 3, 5, 9, 11, 14,
15, 18, 20

1, 3, 5, 9, 11,
14–17, 22, 24,

26–31

X|i+j+k| X|i+j+k+1| X|i+j+k+2| X|i+j+k+3|

2, 7, 12, 13, 16,
17, 19

2, 7, 12, 13,
18–21, 23, 25

X|i+j+k+1| X|i+j+k+2| X|i+j+k+3| X|i+j+k|

4, 6, 8, 10 4, 6, 8, 10 X|i+j+k+3| X|i+j+k| X|i+j+k+1| X|i+j+k+2|

where X = a for γ1(ẽ∆ẽ∆2ẽ); X = b for γ2(ẽ∆ẽ∆2ẽ) and X = c for γ3(ẽ∆ẽ∆2ẽ)

Notes: A region is represented by a number whereas the cell is represented by a
triplet (n1, n2, n3). A region contains one or more cells.

3.1 Properties

Upon investigating the analytical structures of fuzzy controllers the following points can
be enunciated:

• When all the inputs are zero, i.e., [ẽ(k),∆ẽ(k),∆2ẽ(k)] = [0,0,0], the gains
become

γ1(.) =
a|i+j+k| + 3a|i+j+k+1| + 3a|i+j+k+2| + a|i+j+k+3|

8

γ2(.) =
b|i+j+k| + 3b|i+j+k+1| + 3b|i+j+k+2| + b|i+j+k+3|

8

γ3(.) =
c|i+j+k| + 3c|i+j+k+1| + 3c|i+j+k+2| + c|i+j+k+3|

8

(4)
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for class 1 controller, and

γ1(.) =
a|i+j+k| + a|i+j+k+1| + a|i+j+k+2| + a|i+j+k+3|

4

γ2(.) =
b|i+j+k| + b|i+j+k+1| + b|i+j+k+2| + b|i+j+k+3|

4

γ3(.) =
c|i+j+k| + c|i+j+k+1| + c|i+j+k+2| + c|i+j+k+3|

4

(5)

for class 2 controller. These gains are called static gains.

• The gains γ1(ẽ(k),∆ẽ(k),∆2ẽ(k)), γ2(ẽ(k),∆ẽ(k),∆2ẽ(k)), and
γ3(ẽ(k),∆ẽ(k),∆2ẽ(k)) are nonlinear functions of the inputs e(k), ∆e(k), and
∆2e(k).

• The necessary and sufficient condition for the general TS fuzzy PID controller to
become a linear controller is a|i+j+k| = a|i+j+k+1| = a|i+j+k+2| = a|i+j+k+3|,
b|i+j+k| = b|i+j+k+1| = b|i+j+k+2| = b|i+j+k+3| and
c|i+j+k| = c|i+j+k+1| = c|i+j+k+2| = c|i+j+k+3|.

• The gains γ1(ẽ(k),∆ẽ(k),∆2ẽ(k)), γ2(ẽ(k),∆ẽ(k),∆2ẽ(k)), and
γ3(ẽ(k),∆ẽ(k),∆2ẽ(k)) are bounded by the smallest value and the largest value
of the rule consequent parameters. The gains satisfy the following inequalities:

min(a|i+j+k|, a|i+j+k+1|, a|i+j+k+2|, a|i+j+k+3|)

≤ γ1(.) ≤ max(a|i+j+k|, a|i+j+k+1|, a|i+j+k+2|, a|i+j+k+3|)

min(b|i+j+k|, b|i+j+k+1|, b|i+j+k+2|, b|i+j+k+3|)

≤ γ2(.) ≤ max(b|i+j+k|, b|i+j+k+1|, b|i+j+k+2|, b|i+j+k+3|)

min(c|i+j+k|, c|i+j+k+1|, c|i+j+k+2|, c|i+j+k+3|)

≤ γ3(.) ≤ max(c|i+j+k|, c|i+j+k+1|, c|i+j+k+2|, c|i+j+k+3|)

(6)

The inequalities in equation (6) show that the gains γ1(.), γ2(.), and γ3(.) are bounded
by the smallest value and the largest value of the rule consequent parameters.

4 Stability analysis

In this section, BIBO stability of the closed loop control system having one of the
proposed fuzzy controllers in the loop has been investigated. The small gain theorem is
used to establish the stability result. The result is presented in the following theorem:

Theorem: The sufficient condition for the BIBO stability of the feedback control
system in the whole input space, defined by [iW1, (i+ 1)W1]× [jW2, (j + 1)W2]×
[kW3, (k + 1)W3] can be stated as

max(aijk + bijk + cijk).||G2|| < 1 (7)

for i = −J1, ..., 0, ..., J1 − 1; j = −J2, ..., 0, ..., J2 − 1 and k = −J3, ..., 0, ..., J3 − 1.
where max() operator chooses the maximum value from a set of parameters values for
all i, j and k.
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Figure 9 A feedback control system

Proof: Consider a closed loop control system as shown in Figure 9. The following
equations govern the closed loop system.

e1 = u1 − y2, e2 = u2 + y1, y1 = G1e1, y2 = G2e2

Considering G1 as TS fuzzy controller and G2 as any nonlinear plant, and using the
small gain theorem, we can state that ||G1||.||G2|| < 1, i.e., the product of gains of G1

and G2 must be less than 1. Also for any bounded input pair (u1, u2), the output pair
(y1, y2) must be bounded. The norm of plant G2 is defined as

||G2|| := sup
ũ1 ̸=ũ2
k≥0

|ỹ1(k)− ỹ2(k)|
|ũ1(k)− ũ2(k)|

where ũ1(k) and ũ2(k) are any two control signals in the set {ũ(k)}. ỹ1(k) and ỹ2(k)
are outputs of plant G2 for control signals ũ1(k) and ũ2(k), respectively. The norm of
G2 is the gain of the nonlinear plant under consideration.

From equation (3) we have,

||∆us(k)|| = ||γ1(.)e(k) + γ2(.)∆ek) + γ3(.)∆
2e(k)||

= ||γ1(.)e(k) + γ2(.)(e(k)− e(k − 1)) + γ3(.)(e(k)− 2e(k − 1)

+ e(k − 2))||
≤ ||γ1(.) + γ2(.) + γ3(.)||.|e(k)|+ ||γ2(.) + 2γ3(.)||.|e(k − 1)|
+ ||γ3(.)||.|e(k − 2)|

≤ ||γ1(.) + γ2(.) + γ3(.)||.|e(k)|+ ||γ2(.) + 2γ3(.)||.emax1 + ||γ3(.)||.emax2

where emax1 and emax2 are the suprema of the error signal, defined as

emax1 := sup
k≥1

|e(k − 1)|

emax2 := sup
k≥2

|e(k − 2)|

From equation (6) we have

||γ1(.) + γ2(.) + γ3(.)|| ≤ aijk + bijk + cijk;

||γ2(.) + 2γ3(.)|| ≤ bijk + 2cijk; and ||γ3(.)|| ≤ cijk
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where

aijk = max(a|i+j+k|, a|i+j+k+1|, a|i+j+k+2|, a|i+j+k+3|),

bijk = max(b|i+j+k|, b|i+j+k+1|, b|i+j+k+2|, b|i+j+k+3|) and
cijk = max(c|i+j+k|, c|i+j+k+1|, c|i+j+k+2|, c|i+j+k+3|)

Therefore,

||∆us(k)|| ≤ (aijk + bijk + cijk)||e(k)||+ δ

where δ = (bijk + 2cijk)emax1 + cijkemax2.
Hence, by applying the small gain theorem we obtain

max(aijk + bijk + cijk).||G2|| < 1. 2

5 Simulation studies

Two examples of nonlinear dynamical systems have been considered to investigate the
behaviour of the proposed fuzzy PID controllers. We perform simulation studies on
nonlinear systems considering trapezoidal membership functions (A1 ̸= 0, A2 ̸= 0 and
A3 ̸= 0) and the least number of fuzzy sets for the inputs e(k), ∆e(k) and ∆2e(k),
i.e., N1 = N2 = N3 = 3.

Example 1: We consider a nonlinear plant (Mohan, 2011) having the dynamics

·
y(t) = y(t) + sin2(

√
|y(t)|) + u(t) (8)

Table 8 Parameters of linear and fuzzy controllers in Example 1

Linear PID

KP=12.54 KI=53.643 KD=0.056

Fuzzy PID class 1

S−1
∆u=2.55 a0=0.8838 b0=46.956 c0=1.1264

a1=0.862 b1=34.996 c1=1.664
a2=0.6835 b2=40.134 c2=8.64
a3=0.258 b3=15.756 c3=0.272
A1=43.33 A2=0.2365 A3=215.44
B1=134.5 B2=0.3987 B3=350.66

Fuzzy PID class 2

S−1
∆u=6.8342 a0=0.9206 b0=28.986 c0=1.408

a1=0.8979 b1=21.603 c1=2.08
a2=0.712 b2=24.775 c2=10.8
a3=0.2688 b3=9.726 c3=0.34
A1=41.6 A2=0.383 A3=172.35

B1=129.12 B2=0.646 B3=280.525
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A step input of magnitude 10 is applied as the reference signal and the performance of
the proposed fuzzy controllers is evaluated in comparison with the corresponding linear
PID controller.

Genetic algorithm (GA) is used to find the optimal parameters of linear and fuzzy
PID controllers. The cost function is selected as

JPID =
1

T

∫ T

0

(e2(t) + u2(t))dt (9)

The number of tuneable parameters of the linear PID controller is 3 while it is 19 for
the proposed fuzzy PID controller. These parameters are optimised. The values of the
tuneable parameters of the controllers are given in Table 8.

Figure 10 Step responses of nonlinear system in Example 1 (see online version for colours)

Figure 11 Control efforts for nonlinear system in Example 1 (see online version for colours)

The output step responses of the nonlinear plant and the control efforts of linear and
fuzzy PID controllers are shown in Figures 10 and 11. Sampling time Ts = 1 ms is
considered for simulation. The time-domain performance data related to the linear and
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fuzzy PID controllers is enlisted in Table 9. The performance of the proposed general
TS fuzzy PID controllers is better compared to the linear PID controller performance.

Table 9 Time-domain performance data for Example 1

Controller tr (in sec) ts (in sec) Mp (in %)

Linear PID 0.108 0.8 23
Fuzzy PID class 1 0.088 0.1275 0
Fuzzy PID class 2 0.055 0.078 0

Note: tr – rise time; ts – settling time; Mp – peak overshoot.

Example 2: We consider the two-tank system as shown in Figure 12. This system can
be configured as:

1 single-input single-output (SISO) system, where the pump feeds into the upper
tank and the lower tank is not used

2 state-coupled SISO system, where the pump feeds into the upper tank which in
turn feeds into the lower tank.

Figure 12 A two-tank system (see online version for colours)

The dynamics of the two-tank system is given by

·
L1(t) = − a1

A1

√
2gL1(t) +

Kp

A1
Vp(t) (10)
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·
L2(t) =

a1
A2

√
2gL1(t)−

a2
A2

√
2gL2(t) (11)

where L1 and L2 are the water levels in the tank 1 and tank 2, respectively. A1(A2) is
the cross-sectional area of the tank 1 (tank 2), and a1(a2) is the cross-sectional area of
the outflow orifice of tank 1 (tank 2). Vp and Kp are, respectively, the pump voltage
and pump constant. g is the gravitational constant. The values of the parameters are
given in Table 10.

Table 10 List of parameters of the two-tank system

A1, A2 15.379 cm2

a1, a2 0.178 cm2

Kp 4.6 cm3/volts-sec
g 980 cm/sec2

Figure 13 Block diagram of the closed-loop system for water level control

Figure 13 shows the block diagram of the closed loop system where two-tank is the
plant under control and two controllers are employed to control the levels of water in
tank 1 and tank 2. There are two loops; the inner loop regulates the water level in
tank 1 and the outer loop maintains the water level in tank 2. Considering single tank
operation, the inner loop will be active whereas the outer loop is not required. The
reference signal will be given to the inner loop and hence the controller for water level
in tank 2 is not required.

Case 1 SISO system, where the pump feeds into the upper tank and the lower tank
is not used. The inner loop in Figure 13 is in operation. The objective is to
maintain the level of water in tank 1 at a desired level (say 15 cm). We
design the controllers (both linear and fuzzy) by obtaining optimal
parameters using GA. The cost function is selected as in equation (9). The
linear and fuzzy controller parameters are enlisted in Table 11.

The output responses (water level in tank 1) and the corresponding control
efforts obtained with linear and fuzzy PID controllers are shown in
Figures 14 and 15. Sampling time of 1 ms is considered for simulation. The
time-domain performance data of water level control in tank 1 with linear
and fuzzy PID controllers is enlisted in Table 12.

Case 2 State-coupled SISO system, where the pump feeds into the upper tank which
in turn feeds into the lower tank. The control strategy is shown in Figure 13.
The water level in tank 2 is to be maintained at 15 cm.
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The parameters of linear and fuzzy PID controllers are tuned using GA and
the cost function in equation (9). The tuned parameters of linear and fuzzy
controllers are as in Table 13.

The output responses (water level in tank 2) and the control efforts obtained
with linear and fuzzy PID controllers are shown in Figures 16 and 17.
Sampling time of 1 ms is considered for simulation. The time-domain
performance data of water level control in tank 2 with linear and fuzzy PID
controllers is enlisted in Table 14.

Table 11 Parameters of linear and fuzzy controllers for water level control in tank 1

Linear PID

KP = 8.3 KI = 2.8 KD = 0.3

Fuzzy PID class 1 (level 1)

S−1
∆u = 0.8 a0 = 0.0442 b0 = 36.12 c0 = 0.0704

a1 = 0.0431 b1 = 26.92 c1 = 0.104
a2 = 0.0342 b2 = 30.87 c2 = 0.54
a3 = 0.0129 b3 = 12.12 c3 = 0.017
A1 = 866.67 A2 = 0.3075 A3 = 3447
B1 = 2690 B2 = 0.5183 B3 = 5610.5

Fuzzy PID class 2 (level 1)

S−1
∆u = 1.3 a0 = 0.0589 b0 = 45.15 c0 = 0.0845

a1 = 0.0575 b1 = 33.65 c1 = 0.1248
a2 = 0.0456 b2 = 38.59 c2 = 0.648
a3 = 0.0172 b3 = 15.15 c3 = 0.0204
A1 = 650 A2 = 0.246 A3 = 2872.5

B1 = 2017.5 B2 = 0.4146 B3 = 4675.42

Figure 14 Output responses with linear and fuzzy PID controllers for water level control in
tank 1 (see online version for colours)
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Figure 15 Control efforts for water level control in tank 1 (see online version for colours)

Table 12 Time-domain performance data for water level control in tank 1

Controller tr (in sec) ts (in sec) Mp (in %)

Linear PID 0.845 9.2 5.83
Fuzzy PID class 1 1.4285 2.1 0
Fuzzy PID class 2 1.565 2.58 0

Figure 16 Output responses with linear and fuzzy PID controllers for water level control in
tank 2 (see online version for colours)

It is quite evident from both the examples that the proposed fuzzy PID controllers
outperform their linear counterparts. In general, the fuzzy controllers outperform the
linear controllers, the challenge lies in tuning the parameters. In general, the fuzzy
controllers have far more number of tuneable parameters compared to the number of
parameters of linear controllers. Naturally tuning becomes a hectic task. The challenge
lies in tuning the parameters of fuzzy controllers.
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Table 13 Parameters of linear and fuzzy controllers for water level control in tank 2

Linear PID (inner loop)

KP = 8.51 KI = 2.31 KD = 0.04

Linear PID (outer loop)

KP = 3.62 KI = 0.52 KD = 0.123

Fuzzy PID class 1 (inner loop)

S−1
∆u = 0.14 a0 = 0.0134 b0 = 44.33 c0 = 0.306

a1 = 0.0287 b1 = 74.03 c1 = 0.21
a2 = 0.0225 b2 = 78.98 c2 = 0.81
a3 = 0.0086 b3 = 33.33 c3 = 0.257
A1 = 130 A2 = 14.66 A3 = 29.8
B1 = 303.5 B2 = 31.16 B3 = 40.7

Fuzzy PID class 1 (outer loop)

S−1
∆u = 0.242 a0 = 0.0048 b0 = 35.26 c0 = 1.971

a1 = 0.0093 b1 = 58.89 c1 = 2.912
a2 = 0.0074 b2 = 67.53 c2 = 15.12
a3 = 0.0028 b3 = 28.03 c3 = 0.476
A1 = 40 A2 = 1.406 A3 = 12.393

B1 = 124.15 B2 = 2.369 B3 = 18.232

Fuzzy PID class 2 (inner loop)

S−1
∆u = 0.183 a0 = 0.0482 b0 = 57.73 c0 = 0.767

a1 = 0.0823 b1 = 96.41 c1 = 0.526
a2 = 0.0506 b2 = 102.86 c2 = 2.03
a3 = 0.0284 b3 = 43.41 c3 = 0.643
A1 = 577.78 A2 = 11.26 A3 = 9.23
B1 = 1348.89 B2 = 23.92 B3 = 21.56

Fuzzy PID class 2 (outer loop)

S−1
∆u = 0.53 a0 = 0.0037 b0 = 23.656 c0 = 0.141

a1 = 0.0072 b1 = 39.505 c1 = 0.208
a2 = 0.0057 b2 = 45.305 c2 = 1.08
a3 = 0.0022 b3 = 18.802 c3 = 0.034
A1 = 52 A2 = 2.095 A3 = 173.5

B1 = 161.4 B2 = 3.532 B3 = 255.25

Table 14 Time-domain performance data for water level control in tank 2

Controller tr (in sec) ts (in sec) Mp (in %)

Linear PID 9.5 39.2 23.33
Fuzzy PID class 1 15.5 25.2 0
Fuzzy PID class 2 13.3 22.1 0
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Figure 17 Control efforts for water level control in tank 2 (see online version for colours)

6 Discussion and conclusions

Two classes of TS type fuzzy PID controllers have been proposed using AP triangular
norm, BS/Max triangular co-norm, different UoDs and different number of fuzzy sets
for the input variables. An attempt has been made to generalise the fuzzy PID controller
using multiple fuzzy sets with trapezoidal membership functions. The trapezoidal
membership functions can be modified to triangular ones by considering A1 = A2 =
A3 = 0. In this case the expressions of the controllers will be modified accordingly, i.e.,
by replacing θ1 by 0.5B1, θ2 by 0.5B2 and θ3 by 0.5B3. The proposed controllers are
equivalent to (nonlinear) variable gain/structure controllers as their gains are nonlinear
functions of input variables, and their structures vary. Moreover, the controllers become
linear if a|i+j+k| = a|i+j+k+1| = a|i+j+k+2| = a|i+j+k+3|, b|i+j+k| = b|i+j+k+1| =
b|i+j+k+2| = b|i+j+k+3| and c|i+j+k| = c|i+j+k+1| = c|i+j+k+2| = c|i+j+k+3|. The
proposed rule base consists of only four rules compared to eight rules in the literature.
This helps in reducing the number of tuneable parameters. Tuning of fuzzy controllers
becomes relatively easier as the number of tuneable parameters reduces. The number
of tuneable parameters for the proposed rule base is 3(J1 + J2 + J3 + 1). A sufficient
condition for BIBO stability of the closed loop system has been established using
the small gain theorem. Simulation studies on two nonlinear processes show the
applicability of the proposed controllers.
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