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Abstract: Development of black-box model for filtration process has been 
carried out in this work. Data needed for the model development was obtained 
through experimental study on filtration unit using aqueous calcium carbonate 
(CaCO3) slurry. The input and output data generated from the experiment 
consisted of one manipulated variable (feed pressure, Pr), one disturbance 
variable (concentration of the solute in the feed, CA0) and one controlled 
variable (suspension concentration, CA). The data were used to develop a 
fuzzy-based autoregressive integrated moving average exogenous input 
(FARIMAX) model structure. Model order selection was carried out based on 
trial and error while optimal model order was determined using factorial 
technique. The performance of the developed model was determined using root 
mean square error (RMSE), coefficient of determination (R2) and model fit. 
The model gave optimal order [33 3 3 1], RMSE (1.855 × 10–6), R2 (1.000) and 
fit (99.9980%). These results revealed that the model can be used to represent 
dynamic behaviours of the system and the model can be subsequently used for 
model base control design and dynamic optimisation of the process. 

Keywords: fuzzy model; FARIMAX model; black-box model; MATLAB; 
modelling; ARIMAX; filtration process. 
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1 Introduction 

At present, an important number of industrial processes operate in batch mode. Greater 
flexibility (multiproduct capabilities), in response to fast changes in market conditions, 
high quality chemicals or small scale production of fine chemicals are the fundamental 
reasons that justify batch mode of operation (Georgakis, 1990). Under these 
requirements, batch processing continues developing parallel to a growing market where 
demand requires a wider product spectrum. Pharmaceuticals, polymers, biotechnology 
and the food industry constitute typical areas where batch operation dominates over 
continuous operation (Nagy and Braatz, 2003). In most of these industries, operations 
such as drying, fermentation, evaporation, sterilisation and filtration are usually carried 
out in batches (Bimbenet and Trystram, 1992). 

Filtration is a pressure driven separation process that uses membranes to separate 
components in a liquid solution or suspension based on their size and charge differences. 
It is a process widely used in industry, especially in medicine, chemical and mining as 
well as in food and paper industries (Burger et al., 2001). During the filtration process, 
particles that are larger than the pore size of the membrane are deposited to form a filter 
cake on the side of the membrane (Ní Mhurchú, 2008). The purpose of the filtration 
operation is either to increase the solute concentration or for recovery of the liquid 
content of the suspension. Filtration can be operated with either varying pressure or 
constant pressure (Konnur et al., 2006). As part of a more general field of solid–liquid 
separation, filtration has its fundamentals in the flow of fluids in a porous medium and its 
quantification makes use of the famous Darcy equation (Burger et al., 2001). High quality 
demand, together with the time varying nature of its dynamics and the uncertainty 
associated with the filtration process make the process highly complex (Bonvin et al., 
2006). These complexities have made the modelling of the filtration process extremely 
difficult. Thus, the development of a tangible model to represent this process is still a 
challenge to chemical engineers. 

Different researchers have worked on filtration process. Konnur et al. (2006) 
developed Darcy law based approach for simulation of batch constant pressure filtration 
of particulate suspensions when the feed solids concentration changes. They used 
filtration data obtained from feed suspension with a not-very-low solids concentration to 
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propose procedures to predict changes in kinetics of dewatering in the cake formation 
stage, and transition point between the cake formation and consolidation stages, as the 
initial solid concentration changes. These two model parameters were used to predict the 
evolution of dewatering. According to Jelemensky et al. (2013), economically optimal 
operation of batch diafiltration processes was characterised by complex membrane 
transport models that adequately described non-ideal membrane characteristics of  
real-life systems. The optimisation criterion which comprises of two conflicting 
objectives, a minimisation of processing time and a minimisation of solvent consumption 
was considered. The problem was treated in the multi-objective form in order to 
investigate the impact of operational cost factors on optimal operation policy. This 
economically optimal operation of the process was found in the analytical form through 
the application of Pontryagin’s minimum principle (PMP). The phenomenological theory 
of sedimentation–consolidation processes of flocculated suspensions was extended to 
pressure filtration processes by Burger et al. (2001). The local mass and linear 
momentum balances for the solid and liquid components together with appropriate 
constitutive assumptions lead to a strongly degenerate (mixed hyperbolic–parabolic) 
nonlinear partial differential equation for the local solids fraction, which together with 
initial and boundary conditions determines a dynamic cake filtration process. In the case 
of a prescribed applied pressure function, a free boundary problem was obtained, in 
which the piston height has to be determined simultaneously with the solids 
concentration. A numerical algorithm approximating the physically correct solution, with 
possible discontinuities such as the cake/suspension interface, was presented and 
employed to simulate various cake filtration processes. Kovacs et al. (2009) provided 
useful methodology for the design of batch diafiltration processes. A general 
mathematical model in a compact form was derived and unified the existing models for 
constant-volume dilution mode, variable-volume dilution mode and concentration mode 
operations. A rich representation of the separation process was also presented due to the 
employment of concentration-dependent solute rejections in the design equations. The 
use of data-driven and mechanism-driven permeation models allowed the optimisation of 
the overall diafiltration process. 

Modelling of filtration process using the first principle approach which incorporates 
many assumptions for the development of rigorous theoretical models may not be 
adequate for a complex process. This is because theoretical models require a large 
number of equations with a significant number of process variables and unknown 
parameters. An alternative approach is to develop data-driven model directly from  
input-output data generated from the laboratory experiment. This type of model is 
referred to as black-box modelling. Therefore, fuzzy-based autoregressive integrated 
moving average exogenous input (FARIMAX) model is developed. 

2 Methodology 

2.1 Data generation 

The experimental plant in which the experiments were carried out was a filtration unit set 
up as shown in Figure 1. The experimental work was carried out in the unit operation 
laboratory of Chemical Engineering Department, LAUTECH, Ogbomoso, for generation 
of input and output data. The filtration unit consists of control console, which is used for 
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controlling the pump and the tank stirrer. Feed tank which was constructed from acrylic, 
for holding feed slurry that is to be filtered, and is capable of holding approximately 13 
litres of liquid. Feed pump which is capable of flow rates up to 130 Lh–1. The plate and 
frame filter of the unit comprises five acrylic sections, two end plates, and two frame 
plates and one wash plate. The filter medium is a nylon mesh with a 63 μm nominal pore 
size. Also, the unit is fitted with a thermocouple to monitor temperature of process fluid; 
two pressure sensors, one to monitor the feed slurry pressure applied to filter during 
filtration (filtration pressure) and the other to monitor the wash water pressure during 
filter cake washing, and the optical sensor for measurement of amount of light absorbed 
whilst passing through the liquid sample. 

Figure 1 Experimental set up for filtration system (see online version for colours) 

 

Ten litres solution of 0.5% (w/v) calcium carbonate was fed into the feed tank. The feed 
tank stirrer was then turned on to maintain a homogenous feed solution. Valve was 
switched on to allow filtrate to pass into the filtrate vessel. The flowrate of 12 L/h was set 
for the feed pump and monitored to avoid overshoot. Air was bled from the filter frame 
plate, and then pump was switched on to begin pumping. Experiment was allowed to 
continue for 600 seconds (10 mins) by which time cake was retained on the filter surface 
within the filter. The experiment was then repeated at constant flowrate for 900, 1,200, 
1,500, 1,800, 2,100 and 2,400seconds. All the input signals (feed pressure, Pr and 
concentration of the solute in the feed, CA0) and controlled output (suspension 
concentration, CA) were all determined and recorded. The input and output data generated 
were then used for model development. 

2.2 Model structure 

Given filtration process, which has, apart from the disturbance, CA0, the feed pressure, Pr 
as the input and suspension concentration, CA as output, that is represented as shown in 
Figure 2. The general black-box model structure of filtration process was formulated as 
shown Figure 3. 
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Figure 2 Filtration process 
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Figure 3 Black-box model structure of filtration process 

 

C
D

 

B
F

 1
A

 

CA0 

PR CA 
+ 

+  

Due to the non-stationarity in the data generated from the laboratory experiment, an 
autoregressive integrated moving average exogenous input (ARIMAX) structure was 
used which has the following formulations (Tangirala, 2015) 

( )
( ) ( )

( )
( )

1 1

1 1 1
( ) ( ) ( )

d

B q C q
y k u k e k

A q F q D q

− −

− − −
= +

∇
 (1) 

where 

u input signal 

y output signal 

e white noise 

∇d differencing factor = 1 – q–1. 

Tangirala (2015) defined the polynomial coefficients A, B, C, D and F contain in 
equation (1) in terms of the backward shift operator as. 

1 1( ) 1 na
naA q aq a q− − −= + + +  (2) 

1 1 1
1 2( ) nb

bnB q b b q b q− − − += + + +  (3) 

1 1( ) 1 nc
ncC q cq c q− − −= + + +  (4) 
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1 1( ) 1 nd
ndD q dq d q− − −= + + +  (5) 

1 1( ) 1 nf
nfF q fq f q− − −= + + +  (6) 

The nonlinear variance of equation (1) was defined according to: 

(
)

( 1) ( ) ( 1), ( ) ( 1),
 ( ) ( 1), ( ) ( 1)

y k F y k y k na y k y k nd
u k k nb e k e k nc

+ = − + Δ Δ − +

− + − +

 
 

 (7) 

where y(k) represents output, when applied to filtration process under consideration, y(k) 
represents solid concentration of CaCO3 filtration process, CA. u(k) is the control signal or 
process input. There are two input variables, feed pressure of filtration process, Pr and 
solid concentration into the filtration process, CA0. The constants (na, nb, nc, nd) in 
equation (7) are the orders of the system which represent number of past output, number 
of past input, number of past error and number of past differencing factor respectively; 
and they are used in the regressor vector. The function F(.) was accounted for by using 
Takagi-Sugeno fuzzy system. The filtration process was approximated by a multi input 
single output (MISO) Takagi-Sugeno fuzzy system according to: 

1

1 1

1 1

: IF  is AND AND  is 
THEN ( 1) ( ) ( 1) ( ) ( 1),

( ) ( 1) ( ) ( 1)

i i i
i v v

i in i il

i im i ip

R Z F Z F
y k a y k a y k na d y k d y k na

b u k b u k nb c e k c e k nc
+ = − − − − + + Δ + Δ − +

+ + + − + + + − +


 

 
 (8) 

where 

• Ri = ith fuzzy inference rule; 

• ai1, …, ain, di1, …, dil, bi1, …, bim, ei1, … eip are the Consequent parameters associated 
with the model 

• z(k) is the regressor vector which is given as 

( ) ( )1 1 1 2 1( ) ( 1), , ( ), ( 1), , , ( 1), , ,
( 1), , ( ), ( 1), , ( )

z k y k y k na u k u k nb u k k nb
y k y k nd e k e k nc

= − − − − − −
Δ − Δ − − −

  
 

 

• ( 1, 2, , )i
jF j v=   is the fuzzy set which were represented by membership function, 

.i
jμ  

Gaussian membership function was used in the characterisation of each fuzzy set. It was 
adopted to reduce the effect of noise in the signal. It also has low sensitivity to small 
changes in input parameters than singleton membership function (Nafisi et al., 2011). The 
two parameters that characterised Gaussian membership function (μ) as shown in 
equation (9) are the centre, c, and the width, σ. 

2
1exp
2

i
j ji

j i
j

u c
μ

σ

 − 
 = −      

 (9) 
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2.3 Fuzzy clustering 

Fuzzy C-means clustering was adopted, so as to give the best result for overlapped 
dataset, for the extraction of rules as well as determination of value of membership 
functions. The premise part of the rules was formed by fuzzy clustering while the 
defuzzification technique was used to form the consequent part of the rules. The 
parameters of the premise part of the fuzzy rules were determined by fuzzy C-mean 
clustering while the parameters of the consequent part were determined by recursive least 
square (RLS) technique. A crisp output was chosen using the centres of each of the 
output membership function. Centre of gravity (COG) was employed as defuzzifier to 
determine the final output of the fuzzy system according to: 

( ) ( )

( )
1

1

( ) ( )

( )

R
i i ii

R
ii

μ z k g z k
y

μ z k
=

=

= 


 (10) 

where 

( ) 1 1

1 1

( ) ( ) ( 1) ( ) ( 1)
 ( ) ( 1) ( ) ( 1)

i i in i il

i im i ip

g z k a y k a y k na d y k d y k nd
b u k b u k nb c e k c e k nc

= + + − + + Δ + Δ − +
+ + + − + + + − +

 
 

 (11) 

The choice of COG as defuzzifier was because smooth and continuous changes in the 
output parameters were needed (Nafisi et al., 2011; Karray and De Silva, 2004). 

Through the application of a standard fuzzy inference method using Gaussian 
fuzzifier, which reduces the effect of noise in the signal, product fuzzy inference, and 
COG defuzzifier, fuzzy global dynamic model was obtained as 

( )[
]

1 11

1 1

( 1) ( ) ( ) 1 ( ) ( 1),

 ( ) ( 1) ( ) ( 1)

w
i i in i ili

i im i ip

y k ξ x a y k a y k na d y k d y k nd

b u k b u k nb c e k c e k nc
=

+ = + + − + + Δ Δ − +

+ + + − + + − +
  

 
 (12) 

ξ = normalised membership function and was determined by 

( )
( )

1

( ) i
i R

ii

μ xξ x
μ x

=

=


 (13) 

Through combination of equations (10) and (11) 

( )

( )

( )

( )

( )

( )
,0 ,1 ,1 1 1

1 1 1

R R R
i i i i i n ii i i

R R R
i i ii i i

a μ x a μ x a μ x
y

μ x μ x μ x
= = =

= = =

= + + +  
  

  (14) 

Equation (12) was expressed in compact form to give 

( )Ty θ ξ x=  (15) 

where 

[
]

2 1 1 1 2

1 2

( ) ( ), ( ), , ( ) , ( ), ( ), ,

   ( ), ( ), ( ), , ( )

i R

T
i R n n n n

ξ x ξ x ξ x ξ x x ξ x x ξ x

x ξ x x ξ x x ξ x x ξ x

=  


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and 

[ ]1,0 2,0 ,0 1,1 2,0 ,1 1, 2, ,, , , , , , , , , T
R R n n R nθ a a a a a a a a a=      

ξ(x) denotes vector of regressor variables, R is the number of rules. 

2.4 Parameter estimation 

The estimations of the unknown model parameters were carried out in MATLAB 
Environment according to equation (16). These unknown parameters were determined by 
minimising the sum of the square of difference between the actual and predicted output 
values with possible weighting that measures degree of precision (Duan et al., 2012). 

[ ]2

1
( ) Θ ( )Φ( )

k T
k i

J y i k i
=

= −  (16) 

y(i) is the process output in ith step, ΘT(k)Φ(i) is the predicted process output, ΘT(k) is the 
vector of unknown parameters, Φ(i) is the vector of measurements or regressor vector. 

Recursive least squares (RLS) algorithm was employed in the determination of these 
unknown parameters of the model. This is because it gives faster convergence and 
smaller error (Xin et al., 2002; Paleologu et al., 2008). 

The new parameter estimate was computed as 
 
Θ( 1) Θ( ) ( 1)Φ( ) ( 1)k k P k k ε k+ = + + +  (17) 

( )1 1 1 1Θ , , , , , , , , ,T
i in i il i im i ipa a d d b b c c=      

(
)

1 1

1 2 2 2

Φ( ) ( 1), ( 2), ( 3), ( 1), ( 2),
  ( 3), ( 1), ( 2), ( 3)

k y k y k y k u k u k

u k u k u k u k

= − − − − −

− − − −
 

  ( )Φ( )Θ( 1) Θ( ) ( 1)
1 Φ ( ) ( )Φ( )T

P k kk k ε k
k P k k

+ = + +
+

 (18) 


( 1) ( ) Θ ( 1)Φ( )

T
ε k y k k k + = − +   (19) 

P is the covariance matrix or adaptation gain matrix. 
The initial value of covariance matrix determined the influence of initial parameter 

estimations on the identification and it was updated as 

( )( )11( ) ( 1)Φ( ) Φ ( ) ( 1)Φ ( ) Φ ( ) ( 1)I TP k I P k k λI k P k k k P k
λ

−= − − + − −  (20) 

I is identity matrix; λ is forgetting factor. 

2.5 Selection of model orders 

The selection of appropriate model orders (na, nb, nc, nd) is very important when 
developing any black-box model. During the model development, the optimum values of 
these model orders are necessary to be determined in order to avoid under-fitting or  
over-fitting of the developed model. Many criteria are available in the literature for the 
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optimum selections of these model orders. In this work, model order selection was 
carried out based on trial and error while optimal model order was determined using 
factorial technique. Thereafter, the optimal model order was used to develop the 
ARIMAX model for the filtration process. 

2.6 Model validation 

Validation of FARIMAX model was performed through the evaluation of its performance 
using the second data points that were not used for training of the model. The 
effectiveness of the model developed was determined using statistical measures such as 
standard deviation, root mean square error (RMSE), root mean square (RMS) and model 
fit. 

3 Results and discussion 

The concentration responses of data obtained from the laboratory experiment and that of 
simulation to a step change are shown in Figure 4. It is observed in Figure 4 that there is a 
deviation between the experimental and simulation responses. This is as a result of 
nonlinearity of the filtration process. 

Figure 4 Simulation and experimental concentration responses to a step change (see online 
version for colours) 

 

Using the data acquired from the experiment, the optimal model orders were estimated  
by factorial technique as shown in Figure 5. The optimum model orders obtained were  
na = 3, nd = 3, nb1 = 3, nb2 = 3, and nc = 1. This implies, three past output, y(k – 1),  
y(k – 2), y(k – 3), three past differencing operation, ∆y(k – 1), ∆2y(k – 1), ∆3y(k – 1), three 
past input 1, u1(k – 1), u1(k – 2), u1(k – 3) three past input 2, u2(k – 1), u2(k – 2), u2(k – 3), 
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and one past error, e(k – 1) were used to predict current output. The optimal model order 
was then used to develop the ARIMAX model for the filtration process as given below. 

0 1 2 3 1
2 3

2 3 11 21

31 12 0 22 0 32 0

( ) ( 1) ( 2) ( 3) ( 1)
 ( 1) ( 1) ( 1) ( 2)
 ( 3) ( 1) ( 2) ( 3) ( 1)

A A A A

r r

r A A A

C k a a C k a C k a C k d y k
d y k d y k b P k b P k
b P k b C k b C k b C k ce k

= + − + − + − + Δ −
+ Δ − + Δ − + − + −
+ − + − + − + − + −

 (21) 

CA is the model output; Pr is the manipulated variable; CA0 is the disturbance variable. 

Figure 5 Optimised result of model order (see online version for colours) 
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3.1 Developed FARIMAX model 

Three linguistic rules were obtained for FARIMAX model. The output set of the model 
which is dynamic model is a linear combination of the inputs. The FARIMAX model 
developed is a linear relationship between the input and output variables. It comprises of 
two parts, the premise part (If-part) and the consequent part (then-part). In the premise 
part of the model, each rule was assigned 13 membership functions and contains 13 
parameters while the consequent part contains 14 parameters. 

The general form of linguistic rules for FARIMAX model is given as: 
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2 3

1 2 3

2 3
11 1 1

1 11 1 1 2

: If ( 1) is  and ( 2) is  and  ( 3) is  and ( 1)

 is  and ( 1) is  and ( 1) is  and ( 1) 

 is  and ( 2) is  and ( 3)

i i i
i yk yk yk

i i i
yk yk yk

i i
u k u k

Rule y k μ y k μ y k μ y k

μ y k μ y k μ u k

μ u k μ u k

− − −

Δ − Δ − Δ −

− −

− − − Δ −

Δ − Δ − −

− − 21 3 2 1

2 32 2 2 3 1

 is  and ( 1) is 
 and ( 2) is  and ( 1) is ( 1) is 

i i
u k u k

i i i
u k u k ek

μ u k μ
u k μ u k μ e k μ

− −

− − −

−
− − + −

 

Then 
2

0 1 2 3 1 2
3

3 1 1 2 1 3 1 1 2

2 2 3 2

( ) ( 1) ( 2) ( 3) ( 1) ( 1)
         ( 1) ( 1) ( 2) ( 3) ( 1)
         ( 2) ( 3) ( 1)
                                  

i i i i i i

i i i i i

i i i

y k a a y k a y k a y k d y k d y k
d y k b u k b u k b u k b u k
b u k b u k c e k

= + − + − + − + Δ − + Δ −
+ Δ − + − + − + − + −
+ − + − + −

                                                                       1, ,3i = 

 

μ is the membership function. 
The centre (c) and width (σ) of the membership function, which are the estimates of 

the membership function associated with each rule are presented in Table 1. 
Table 1 Estimates of membership function 

 Centre, C   Sigma, σ 
 Rule 1 Rule 2 Rule 3  Rule 1 Rule 2 Rule 3 

y(k – 1) 0.3904 0.5775 0.4390  13.5712 14.0926 13.2571 
y(k – 2) 0.6473 0.4111 0.5134  14.0904 13.3720 13.2800 
y(k – 3) 0.4994 0.6108 0.5446  13.3493 13.1189 13.7840 
∆y(k – 1) 0.5471 0.6222 0.6443  –0.4082 –0.51365 0.5574 
∆y2(k – 1) 0.5529 1.2423 0.6647  0.1287 –1.2196 0.5987 
∆y3(k – 1) 1.6264 1.6544 0.8405  1.3903 –1.6932 0.0984 
u1(k – 1) 1.7527 1.8087 3.5101  10.0996 10.1279 17.6246 
u1(k – 2) 1.5245 2.8529 3.0475  10.0361 19.7396 12.6866 
u1(k – 3) 3.0609 1.7852 1.4262  19.6886 14.8599 9.9871 
u2(k – 1) 0.6329 0.5772 0.4615  2.2659 2.2587 2.6474 
u2(k – 2) 0.6451 0.5925 0.4640  2.2541 2.259279 2.2628 
u2(k – 3) 0.6683 0.5915 0.4777  2.2540 2.2588 2.2460 
e(k – 1) 1.7300E-05 1.5100E-05 1.3000E-05  2.6100E-05 2.1300E-05 2.4600E-05 

The plots of the estimates of membership function for each linguistic rule are shown in 
Figures 6–8. Each plot has 13 membership functions for each rule. The membership 
functions have similar pattern. An individual permissible variation limit was defined for 
each of the input and output signal. The permissible variation limit for changes in output, 
y, for each rule is from 10 to 20 kg/m3. The membership functions of these parameters 
were defined such that increase or decrease from the minimum or maximum permissible 
limits can be specified in the fuzzy controller. For the first input, μ1, for all the 3 rules the 
changes from 0 to 20 bar are permissible while in second input, μ2, changes from 0 to  
4 kg/m3 are permissible for all the three rules. 
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Figure 6 Input membership function for rule 1 (see online version for colours) 
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Figure 7 Input membership function for rule 2 (see online version for colours) 
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Figure 8 Input membership function for rule 3 (see online version for colours) 
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3.2 Validation of FARIMAX model 

The predicted model output is shown together with the measured validation data in 
Figure 9. Statistical measurement such as RMSE was used to test for the performance of 
the model. The RMSE obtained for FARIMAX model was 1.855 × 10–6. Due to the small 
value of RMSE obtained, it can be said that FARIMAX model developed gave good fit. 
The fit value refers to the percentage of the data that model could account for. The higher 
the value of the fit, the better the model. The best fit of the developed model is 
99.9980%, and then it means that the ARIMAX model developed could account for 
99.9980% of the experimental data. Due to the small value of RMSE obtained, it can be 
said that FARIMAX model developed gave good fit. 
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Figure 9 The predicted and measured output responses (see online version for colours) 
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4 Conclusions 

This research work has considered FARIMAX Input model to characterise nonlinear 
behaviours of filtration process. The nonlinearity, coupling between inputs and error were 
approximated by Takagi-Sugeno fuzzy model whose structure is assumed to be known 
but the parameters are unknown. The model consists of nonlinear fuzzy part and linear 
part. The input and output data for the model identification were generated using 
filtration unit. Parameter estimations were carried out by using recursive least square 
method. Due to the high fit value and low mean squared error, FARIMAX model 
developed can be used to represent the behaviour of the filtration process successfully. It 
can also be used for the development of control scheme for the filtration system. 

References 
Bimbenet, J.J. and Trystram, G. (1992) ‘Process control in food industry’, Trans. IChemE C,  

Vol. 70, No. 9, p.115. 
Bonvin, D., Srinivasan, D., and Hunkeler, D. (2006) ‘Control and optimization of batch processes: 

Improvement of process operation in the production of specialty chemicals’, IEEE Contr. Syst. 
Mag., Vol. 26, No. 6, pp.34–45. 

Burger, R., Concha, F. and Karlsen, K.H. (2001) ‘Phenomenological model of  
filtration processes:Cake formation and expression’, Chemical Engineering Science, Vol. 56, 
No. 15, pp.4537–4553. 

Duan, H., Jia, J. and Ding, R. (2012) ‘Two-stage recursive least squares parameter estimation 
algorithm for output error models’, International Journal of Mathematical and Computer 
Modelling, Vol. 55, Nos. 3–4, pp.1151–1159. 



   

 

   

   
 

   

   

 

   

    Development of FARIMAX model for filtration process 15    
 

    
 
 

   

   
 

   

   

 

   

       
 

Georgakis, C. (1990) Opportunities and Challenges of the Optimization and Control of batch 
Processes, Generic Control for Batch Manufacturing, Purdue Research Foundation, Indiana, 
USA. 

Jelemensky, M., Paulen, R., Fikar, M. and Kovacs, Z. (2013) ‘Economically optimal control of 
batch diafiltration processes’, IEEE Multi-conference on Systems and Control (Conference on 
Control Applications), pp.734–739. 

Karray, F. and De Silva, C. (2004) Soft Computing and Intelligent Systems Design, Theory, Tools 
and Applications, Pearson Education Limited, Edinburgh Gate, Harlow, England. 

Konnur, R., Kumar, P. and Sasanka, R. (2006) ‘Modeling and simulation of dewatering of 
particulate suspensions by batch pressure filtration’, Proceedings of the International Seminar 
on Mineral Processing Technology, pp.186–192. 

Kovacs, Z., Fikar, M. and Czermak, P. (2009) ‘Mathematical Modelling of Diafiltration. 
Hungarian Journal of Industrial Chemistry VESZPREM, Vol. 37, No. 2, pp.159–164. 

Nafisi, V., Eghbal, M., Motlagh, M. and Yavari, F. ( 2011) ‘Fuzzy logic controller for hemodialysis 
machine based on human body mode’, Journal of Medical Signals and Sensors, Vol. 1, No. 1, 
pp.36–48. 

Nagy, Z. and Braatz, R. (2003) ‘Robust nonlinear model predictive control of batch processes’, 
AIChE Journal, Vol. 49, No. 7, pp.1776–1786. 

Ní Mhurchú, J. (2008) Dead-End and Crossflow Microfiltration of Yeast and Bentonite 
Suspensions: Experimental and Modelling Studies Incorporating the Use of Artificial Neural 
Networks, PhD thesis, Dublin City University, School of Biotechnology, Dublin. 

Paleologu, C., Benesty, J. and Silvu, C. (2008) ‘A robust variable forgetting factor recursive least 
squares algorithm for system identification’, IEEE Signal Processing Letters, Vol. 15,  
pp.597–600. 

Tangirala, K. (2015) Principles System Identification, Theory and Practice, CRC Press, New York. 
Xin, X., He, H. and Hu, D. (2002) ‘Efficient reinforcement learning using recursive least squares 

methods’, Journal of Article Intelligence Research, Vol. 16, No. 1, pp.259–292. 


