A welding manipulator path planning method combining reinforcement learning and intelligent optimisation algorithm
by Junhua Zhang; Lianglun Cheng; Tao Wang; Wenya Xia; Dejun Yan; Zhiheng Wu; Xianyun Duan
International Journal of Modelling, Identification and Control (IJMIC), Vol. 33, No. 3, 2019

Abstract: We present DDPG-AACO, a hierarchical method for welding manipulator path planning of complex components welding tasks that combines reinforcement learning (RL) with the intelligent optimisation algorithm. The RL agent, trained with the deep deterministic policy gradient (DDPG), learns local path planning policies that control the welding manipulator to safely move between two welding seam endpoints. Next, on a distance matrix constructed by the lengths of local paths between every two welding seam endpoints, the adaptive ant colony optimisation (AACO) algorithm with artificially changed value of pheromones is adopted to realise the global path planning that the welding manipulator traverses all welding seams under a welding direction constraint and has the shortest path length. The simulation results show the effectiveness of the method. The DDPG is better than the deep Q-learning-based methods when performing local path planning. Moreover, the length of the global path with direction constraint can converge to the minimum.

Online publication date: Mon, 23-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com