Towards improving constrained robust model predictive control with free control moves
by Xianghua Ma; Shuang Fang
International Journal of Modelling, Identification and Control (IJMIC), Vol. 33, No. 3, 2019

Abstract: An existing robust model predictive control (RMPC) algorithm parameterises the infinite horizon control moves into a set of free control moves over a fixed horizon and a state feedback law in the terminal region. This paper is towards further improving the feasibility and optimality of this kind of RMPC. The improvement is by introducing an extended parameter-dependent Lyapunov function to substitute the original parameter-dependent Lyapunov function. Correspondingly, the terminal-weighting matrix is extended parameter-dependent, the local control law is a non-parallel distributed compensation, and the terminal constraint set is an intersection of more ellipsoids. The new technique is demonstrated by a simulation example.

Online publication date: Mon, 23-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com