Analytic hierarchy process-based model reduction of higher order continuous systems using sine cosine algorithm
by Tapan Prakash; S.P. Singh; V.P. Singh
International Journal of Systems, Control and Communications (IJSCC), Vol. 11, No. 1, 2020

Abstract: The analysis of higher order systems is tedious and cumbersome task. This motivated analysts to reduce higher order systems into lower order models using mathematical approaches. In this paper, an analytic hierarchy process (AHP)-based approximation of stable higher order systems to stable lower order models using sine cosine algorithm (SCA) is presented. The stable approximant is deduced by minimising the relative errors in between time moments and Markov parameters of the system and its approximant. In order to match the steady states of the system and its approximant, the first time moment of the system is retained in the approximant. AHP is utilised to convert multi-objective problem of minimisation of errors in between time moments and Markov parameters into a single objective problem by proper assignment of weights. To ensure the stability of the approximant, Hurwitz criterion is utilised. The systematic nature and efficacy of the proposed technique is validated by deriving approximants for three different test systems.

Online publication date: Thu, 27-Feb-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Systems, Control and Communications (IJSCC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com