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Abstract: Accurate prediction of blast induced ground vibration variables such 
as particle velocity and frequency are of interest for safe design of controlled 
blasting operations for mining, tunnelling or excavation projects. There are 
certain limitations in the widely used empirical and numerical approaches 
especially when number of variables is large. Various data driven approaches 
have been employed for producing correct estimates for such cases. Decision 
tree (DT), earlier successfully employed for solving variety of civil engineering 
problems, is employed for prediction of blast variables for the first time in this 
article. The performance of DT models was found to be equally good  
(for particle velocity variable) or better than (for frequency variables) ANN 
models developed in this study, and unequivocally superior to the SVM or RF 
models reported in literature. Additionally, the clarity in decision rule-based 
estimation foster easy comprehension and future implementation. 
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1 Introduction 

Execution of deep excavation work for large construction projects, as well as tunnelling 
and mining works necessitate underground blasting operations. The energy released by 
the explosive charge is partially (20%–30%) expended in fracturing the rock and the 
remaining energy is dissipated in the form of shock waves emanating in radial directions 
from the blast source (Monjezi et al., 2011). These shock waves generated due to 
underground blast affect the structures near the blasting site. The regulatory and safety 
guidelines stipulate that the blasting activity should be designed so that its adverse effects 
on the adjacent structures are minimal. Evaluating the effects of underground blasts at a 
certain distance from the source thus forms a very important consideration for design of 
controlled blasting for deep excavation, tunnelling or mining. The various factors 
affecting the blast response at a certain distance from the source would include the 
following: 

a Properties of the rock media: rock properties; integrity coefficient; orientation of 
fracture planes. 

b Blast parameters: charging amount at one time; total charging amount; explosive 
type; detonation velocity. 

c Separation variables: horizontal distance; elevation difference; angle of minimum 
resistance line to measured point (°). 

The various approaches for estimation of the effects of the underground blast at desired 
distances from the blast source can be broadly categorised as: empirical modelling, 
numerical methods and soft computing approaches. The empirical methods are generally 
advocated by national standards (IS 6922: 1973) for the ease of application and are 
favoured for their simplicity by the industry as well (Tripathy and Shirke, 2015; Tripathy 
et al., 2016; Ray et al., 2018; Ray and Dauji, 2019). Analytical hierarchy process had 
been suggested for the selection of the best-suited empirical expression for site-specific 
blast vibration prediction (Kalayki and Ozer, 2016). Dauji (2018) discussed a novel and 
efficient approach for improving the accuracy of the empirical models for prediction of 
vibration attenuation variables for underground blast. However, empirical models involve 
assumptions of the equation form, and evaluation of certain constants of the empirical 
formulation. The input variables generally considered are two in number, namely, 
maximum charge per delay and separation distance (Monjezi et al., 2011). At best, the 
empirical approaches can handle a limited number of input variables (four in Monjezi et 
al., 2011) for achieving efficient model development. The variations of the site-specific 
constants limit the prediction accuracy of generalised empirical vibration attenuation 
relationships (Mohamadnejad et al., 2012). Factors affecting the vibration attenuation in 
underground blasts being multiple in numbers and the interrelationship between them 
having various degrees of nonlinearity, the empirical approaches are at distinct 
disadvantage for accurate prediction of the vibration parameters such as peak particle  
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velocity (PPV) and frequency (Monjezi et al., 2011). The preceding discussion explained 
the assumptions and the limitations of the generalised or site-specific empirical vibration 
attenuation relationships for underground blasts. 

If properly implemented, the numerical prediction generally offer the better results – 
for they are based on the physics of the blast wave propagation and the rock properties 
are represented with the constitutive models as well (Hao and Wu, 2005a, 2005b; Ma and 
An, 2008; Yilmaz and Unlu, 2013; Liu et al., 2017). However, a large amount of input 
data is generally required for setting up of the numerical model for a particular site, and 
these are difficult to ascertain with good accuracy in the initial stages of excavation or 
mining. Additionally, they require expertise in setting up of the model domain, 
application of the blast load, validation with field observations and finally, interpretation 
of the results. The assumptions of the constitutive model for rock as well as the 
simulation of the blast load form the other limitations for numerical model based 
prediction. Furthermore, extensive studies are required for fixing up of optimum model 
domain, suitable constitutive model for the rock, proper blast load definition, insensitivity 
of mesh size, and other parameters for fine-tuning the model to the site observations. All 
these activities necessitate a huge computational demand, which oftentimes is not readily 
available for the studies conducted for design of controlled blasting. 

At this backdrop, data driven approaches appear extremely attractive owing to their 
flexibility in the representation of the relationship (linear/nonlinear) of the different input 
variables with the output variable of interest. Additionally, their capability of handling 
more number of variables at a given time is especially useful. Furthermore, data driven 
models are tolerant to noise in data and the developed models can be continuously refined 
with fresh incoming data. Application of a variety of soft computing tools had been 
reported for blast related studies in literature. These included universally popular artificial 
neural network (ANN) (Khandelwal and Singh, 2009; Monjezi et al., 2010, 2011; 
Mohamadnejad et al., 2012; Jang and Topal, 2013; Saadat et al., 2014), support vector 
machine (SVM( (Longjun et al., 2011; Mohamadnejad et al., 2012), random forest (RF) 
(Longjun et al., 2011), genetic program and gene expression program (GP/GEP) 
(Faradonbeh et al., 2016), adaptive neuro-fuzzy inference system (ANFIS) (Mottahedi  
et al., 2018), particle swarm optimisation (PSO) Mottahedi et al., 2018), and other AI or 
hybrid options (Sivandi-pour et al., 2015; Sivandi-pour and Farsangi, 2019) among 
others. 

Khandelwal and Singh (2009) employed ANN as well as multivariate regression for 
prediction of blast induced ground vibration and frequency. From their study, they 
concluded that ANN was superior in flexibility and accuracy. Monjezi et al. (2010) 
compared different types of ANN for predicting blast induced ground vibration and 
concluded that multilayered perceptron neural network was best suited for the 
application. Longjun et al. (2011) reported prediction accuracy of SVM and RF for blast 
variables and this study would be discussed in more detail subsequently. Mohamadnejad 
et al. (2012) compared empirical methods, ANN and SVM for accuracy in prediction of 
blast-induced ground vibration and reported SVM as the superior technique for that 
application. Jang and Topal (2013) explored over-break prediction based on geological 
parameters with ANN and multiple regression (linear as well as nonlinear) and concluded 
that the ANN would be the better suited tool for over-break warning. Saadat et al. (2014) 
reported that the ANN models performed better than the empirical models for blast 
vibration prediction in Gol-E-Gohar mines in Iran. Faradonbeh et al. (2016) compared 
prediction accuracy of GP and GEP for fly-rock assessment and concluded that GEP was 
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better suited for the case examined. Mottahedi et al. (2018) employed ANFIS and  
ANFIS-PSO models for over-break prediction and reported that ANFIS-PSO resulted in 
estimates that were more accurate. As in other civil engineering problems, ANN had 
found the widest and most successful application in blast related studies as well. 

Decision tree (DT), alternatively known as model tree or regression tree, is another 
promising data-driven tool that had not yet been utilised up to its potential in this area, to 
the best knowledge of the author. DT had found successful application in various other 
civil engineering problems including hydrology (Solomatine and Xue, 2004; Kim and 
Pachepsky, 2010; Gharaei-Manesh et al., 2016), oceanography (Garg et al., 2008), 
capacity estimation of structural steel members (Dauji, 2019), and concrete technology 
(Ayaz et al., 2015; Behnood et al., 2015; Dauji, 2016). In the geological and geotechnical 
domain, a study (Tiryaki, 2008) was reported wherein intact rock strength (uniaxial 
compressive strength, static modulus of elasticity) was estimated from rock index tests 
and intact rock properties with ANN, regression trees (or DT) and statistical models. The 
author concluded that the DT offered the best predictive model for the variables. Another 
study by Dindarloo and Siami-Irdemoosa (2015) examined the ground rippability (ease of 
excavation) with DT along with conventional diggability index rating and DT was found 
to be comparatively promising. However, application of DT for prediction of vibration 
variables for underground blast is sparse in literature. 

Most of the blast related studies (empirical or soft computing) employ few input 
variables (charge weight, distances) for prediction of PPV either due to the limitation of 
the tool in handling larger number of variables efficiently, or due to limitation of the 
recorded trial blast data on which the models are developed. In this context, the study by 
Longjun et al. (2011) was rich in data wherein nine input variables were recorded along 
with three output variables. The output variables recorded included PPV, the first 
dominant frequency (FDF) as well as its duration. This formed one of the most 
comprehensive database reported in literature, which encapsulated the variables of 
interest in design of controlled blasting operations: PPV, FDF and its duration (DurFDF). 
The authors had concluded that the SVM was better in terms of average predicted error 
ratio whereas the RF had the advantage of definite weight parameters for all factors 
involved, thereby had ease of future estimation. Careful evaluation of the results from 
SVM and RF models as reported in literature (Longjun et al., 2011) strongly indicated 
that application of other data mining tools could be explored to achieve better accuracy in 
prediction. 

The application of data driven techniques has eased out development of empirical 
models to a large extent. However, often it is observed that the researcher applies one or 
two tools to infer the prediction accuracy for a particular problem. It is generally accepted 
fact that the success of soft computing tools is problem specific: same tools may perform 
differently for different problems (datasets); and for a single problem (datasets), various 
tools could result in substantial variation in resulting accuracy. In the circumstances, the 
correct approach would be to explore many different available tools and choose the one 
yielding the best results for the given problem. In applications such as the ANN or SVM, 
the practical application requires the engineer to be conversant and knowledgeable about 
the tool. In contrast, tools such as DT or RF result in clear-cut decision rules and this 
simplifies the understanding and future implementation of the tools even by the engineers 
uninitiated in the specific tool. This is an important feature which should be carefully 
considered for choice of the soft computing tool for a particular application. 
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Therefore, in this article, the database reported by Longjun et al. (2011) has been 
utilised to develop data driven prediction models for PPV, FDF, and DurFDF separately 
with the objective of attaining better accuracy in prediction. For this purpose, this author 
selected the promising but relatively unexploited tool of DT along with the universally 
popular and successful model-free tool ANN for comparison. The advantage in case of 
the tool DT would be the domain splitting and definition of the decision rules for each 
domain, which would foster comprehension and make possible for practicing engineers to 
implement the rules in actual site without having detailed technical background of the 
model development. Thus, DT had special feature extraction option from the data, which 
could be very useful in practical application. This motivated the author to examine the 
accuracy of modelling of the blast parameters with DT, in addition to ANN. By adopting 
a similar data division for modelling and evaluation purposes as that reported in literature 
for SVM and RF (Longjun et al., 2011), the performance of four soft computing tools, 
namely, DT, ANN, SVM, and RF, could be compared in this study and relative merits 
would be discussed. 

The article is organised as follows: the problem has been introduced along with the 
literature review in the present section. The data utilised for the study has been taken 
from the literature and this has been explained in the second section along with the brief 
description of the tools employed in the study (ANN and DT) and the performance 
metrics used for evaluation of relative performance of the explored tools. The results 
have been presented in pictorial form along with discussion on the relative performance 
and merits of the various tools in the third section. The salient conclusions drawn from 
the study are presented in the last section along with the suggested approach for soft 
computing solutions for addressing similar problems. 

2 Data and methodology 

2.1 Data 

The underground blasts conducted for excavation or tunnelling result in release of 
explosive energy, which propagates through the surrounding media in the form of stress 
waves. The present study evaluates the estimation accuracy of DT and ANN for the 
ground vibration variables in case of underground blasts. The particle velocity and the 
frequency of vibration at certain distance from the source would describe the ground 
vibration quite well. The variables of interest would be the PPV and the dominant 
frequency and these would form the target variables. 

In most of the studies (empirical as well as soft computing tools) reported in 
literature, the charge weight and the distance (horizontal) between the detonation point 
and the measurement point had been adopted as the input variables. As mentioned earlier, 
a more comprehensive measurement was reported (Longjun et al., 2011), which 
comprised of nine input variables and three output variables – recorded for a total of 108 
sets and this data set was selected for this study. The blast data pertained to blasting 
vibration study conducted in a copper mine in China. The PPV, FDF and the duration of 
first dominant frequency (DurFDF) were the three target variables reported in the 
literature (Longjun et al., 2011) and these characterise the effects of underground blast on  
 
 



   

 

   

   
 

   

   

 

   

    Prediction accuracy of underground blast variables 45    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

existing structures quite well. Therefore, these three had been selected as target variables 
in this study. For the estimation of the predicted variables, the authors (Longjun et al., 
2011) recorded nine input variables, which were: charging amount at one time (kg); total 
charging amount (kg); horizontal distance (m); elevation difference (m); front row 
resistance line (m); presplit penetration ratio (%); integrity coefficient; angle of minimum 
resistance line to measured point (°); detonation velocity (m/s). These variables would be 
considered as input variables for prediction of the target variables, namely, PPV, FDF, 
and DurFDF with the tools of DT and ANN, with the aim of best possible prediction 
accuracy. 

Longjun et al. (2011) reported the prediction performance of two soft computing 
techniques: RF and SVM. In the present study, two other machine learning tools were 
employed: DT and ANN. For this purpose, three separate models were developed with 
nine inputs and a single output: PPV, or FDF, or DurFDF. Thus, for each target variable 
(PPV, FDF or DurFDF), there was a separate model. This was deviation from the study 
(Longjun et al., 2011) with which the performance accuracy would be compared, wherein 
the authors had developed a single combined model with nine inputs and three outputs. 
Models with single target variable were adopted in this study with the objective of getting 
the best generalisation capability from the respective tool for each target variable. 

The data for the study was adopted from literature (Longjun et al., 2011) and it 
comprised of a total 108 sets of records. As the performance of models developed in the 
present study would be compared with those from literature, similar division of the 
records for model development and performance evaluation was adopted. Out of the total 
data, 93 sets (~ 86%) had been employed for development of the models (modelling or 
training data) and the remaining 15 sets (~ 14%) were used for performance evaluation 
(evaluation or testing data). All the performance metrics reported throughout the present 
study pertain to those achieved with the evaluation or testing set, i.e., the data that was 
not used in development of the respective model. For further details regarding the blast 
activities and the recorded data, readers may refer literature (Longjun et al., 2011). 

2.2 Methodology 

As mentioned earlier, the soft computing tools employed in this study were DT and 
ANN. ANNs had been quite popular in the blast studies (Khandelwal and Singh, 2009; 
Monjezi et al., 2011; Mohamadnejad et al., 2012; Jang and Topal, 2013; Saadat et al., 
2014) and need little introduction. DT (also known as regression tree or model tree) was a 
relatively less exploited data mining tool (Tiryaki, 2008; Dindarloo and Siami-Irdemoosa, 
2015) in the geotechnical domain, though it boasted of the additional attraction of the 
clearly defined decision rules for prediction of the variables. These tools are discussed 
briefly in the following subsections. 

2.3 Artificial neural network 

ANN is a soft computing tool that endeavours to map a set of input vector to the 
corresponding set of output vector with a non-linear relationship. It does not require any 
a-priori assumption on the dependency structure between the input and output. 
Structurally, ANN is an interconnection of neurons arranged in three or more layers  
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(Figure 1), with the input and output layers easily understood. In between input and 
output layers, there are one or more hidden layers of neurons in order to ensure the 
desired non-linearity in the prediction model. The neuron functions [Figure 1(a)] by 
getting a weighted sum of inputs, adding a bias term, and passing this sum through a 
transfer function to get the output of the neuron, which is then passed to subsequent 
neurons. In general, a layered structure (multi-layered perceptron, MLP) is preferred for 
ANN, comprising of the input layer, one or more hidden layers and the output layer 
[Figure 1(b)]. Training of ANN refers to the optimisation of the various weights and the 
biases of the selected network architecture. 

Figure 1 ANN (a) basic structure (b) feed forward network (see online version for colours) 

 
(a) 

 
(b) 
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The architecture of the ANN is a very important decision, in which a balance between the 
sufficient degrees of freedom for representing (nonlinear) relationship between the 
various inputs, sufficiency of the available data length for achieving adequate training, 
and avoiding the problem of over-fitting. In many other studies (Monjezi et al., 2011), 
relatively higher number of model variables were trained with given dataset (111 
variables with 162 training sets). However, the general consensus remains that for 
extracting the best results from data-driven tools, the number of training sets should be 
four to five times the number of independent variables in the ANN model. In this study 
dealing with nine inputs, the number of neurons in the hidden layer was limited to two to 
retain the generalisation capability of the ANN models trained with 93 sets of data (12 or 
23 variables with 93 training sets). Thus, the possible architecture of ANN explored were 
9-1-1 and 9-2-1. 

Of the various training options for feed-forward back propagation (FFBP) network, 
resilient propagation algorithm was adopted in this study. In this algorithm, the sign of 
the derivatives directs the weight update and the actual value of weight update is 
determined separately. In this way, the convergence issues associated with small 
derivative values (for large inputs) were avoided, thereby providing adequate and 
efficient training. For further details, readers may refer literature (Bose and Liang, 1993; 
Wasserman, 1993; Haykin, 2008). 

2.4 Decision tree 

DT, sometimes known as model tree or regression tree, employs a computation process 
resembling a tree structure. The DT originates from a root node (decision box) to other 
nodes (decision boxes) or leaves (models) based on decision output: ‘yes’ or ‘no’. As a 
result, the model space is subdivided into subspaces, within each of which a particular 
decision rule prevails. The subdivision or domain splitting is conducted by some 
algorithm, such as, minimum entropy in subdomain, or collecting as many samples as 
possible in the class, or any other. In popular M5 algorithm of DT, the domain splitting is 
performed by minimising the standard deviation of the class value reaching a node 
(Quinlan, 1992; Rokach and Maimon, 2015) and this approach has been adopted in this 
study. Figure 2(a) depicts the subdivision of the domain for two variables and Figure 2(b) 
pictures the corresponding DT, where the diamond correspond to a decision node and the 
rectangles represent the decision rule. 

The attribute for the root node is selected according to its ability to maximise the 
standard deviation reduction. During model development, many possible options of input 
divisions are explored and the particular option that yields the maximum value of the 
standard deviation reduction is selected to build linear models in each subdomain. 
Methods for avoiding too many domain splits or large discontinuities between 
neighbouring models were reported in literature (Witten and Frank, 2000; Rokach and 
Maimon, 2015; Jekabsons, 2016). The development of DT for a particular data 
essentially means the subdivisions of the data hyper-space to achieve the desired 
objective (say, maximum reduction of standard deviation in M5 algorithm), and define 
the decision rules for each of the subdomains. Further details for DT development may be 
obtained from literature (Witten and Frank, 2000; Rokach and Maimon, 2015). 
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Figure 2 DT (a) domain subdivision (b) tree structure (see online version for colours) 

 
(a) 

 
(b) 

2.5 Performance metrics 

As mentioned earlier, the ‘performance’ detailed in this article referred to the 
performance corresponding to the evaluation or testing data set. In literature (Longjun et 
al., 2011), the performance of the developed models (with SVM and RF) were compared 
with the individual relative error values. In this study, however, the performance 
comparison were presented for the two tools (DT and ANN) used in this study along with 
the two tools (SVM and RF) reported in literature with the overall error metrics. These 
were correlation coefficient (R), the root mean squared error (RMSE), and mean absolute  
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error (MAE) along with the limits of relative errors in maximum of overestimation and 
underestimation. With the concern of the vibration effects on the existing installations 
around the blast site in perspective, the maximum underestimation would be deemed 
particularly important. The median value of the absolute relative error was also reported. 
These performance metrics are self-explanatory. Individual relative errors would be 
compared for the two tools exercised in this study, namely, DT and ANN. 

3 Results and discussions 

Separate models were generated for the three output variables of interest, namely, PPV, 
FDF, and the DurFDF. As explained earlier, option of separate models were selected to 
achieve best generalisation ability of the models from the limited datasets. The results for 
each output variable are presented in separate subsections. 

3.1 Prediction of PPV 

The DT as well as the ANN models developed in this study was with nine inputs and 
single output (PPV) as detailed in the methodology section. The model development was 
performed with 93 sets and model evaluation was done with 15 sets, similar to that 
reported in literature (Longjun et al., 2011) for comparison. A sample training 
progression for 1,000 epoch is presented in Figure 3(a). The comparative performance of 
the training and testing data for ANN and DT are presented in Figure 3(b) and Figure 3(c) 
respectively. The performance obtained in this study with DT and ANN were compared 
with those reported in literature (Longjun et al., 2011) with other tools (SVM and RF), in 
Figure 4(a) to Figure 4(f) with the R, RMSE, MAE, maximum relative over prediction 
and maximum relative under prediction in pictorial form. ANN model yielded the highest 
R, lowest of RMSE and MAE; and DT was close second. The relative over prediction 
was minimum for DT with the relative under prediction being minimum for SVM 
(Longjun et al., 2011).The median of the absolute relative error, another indication of the 
accuracy of the developed model, was lowest for the SVM and followed by RF (Longjun 
et al., 2011). Out of the two tools employed in this study, the DT fared better in terms of 
the median of absolute relative error. However, the overall performance of the ANN was 
best for the variable PPV in this study. 

3.2 Prediction of FDF 

Similar to those for PPV, Figure 5(a) to Figure 5(f) represent pictorially the R, RMSE, 
MAE, maximum relative over prediction and maximum relative under prediction 
obtained for the FDF. The results were for the models developed in this study (with DT 
and ANN) along with those from literature (SVM and RF) (Longjun et al., 2011) for 
comparison. DT model yielded the highest R, lowest of RMSE and MAE, and the relative 
over prediction was smallest for DT with the relative under prediction being smallest for 
SVM (Longjun et al., 2011). In case of the FDF, the median of the absolute relative error 
came to be almost same lowest value for the SVM (Longjun et al., 2011) and DT (this 
study), followed by ANN. 
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3.3 Prediction of DurFDF 

For the DurFDF, as before, the R, RMSE, MAE, maximum relative over prediction and 
maximum relative under prediction were depicted in Figure 6(a) to Figure 6(f) 
respectively for DT and ANN (this study) as well as the SVM and RF (Longjun et al., 
2011). DT model yielded the highest R, lowest of RMSE and MAE, and the relative over 
prediction was lowest for DT with the relative under prediction being smallest for ANN. 
The median of the absolute relative error was lowest for the ANN, followed by DT. 

Figure 3 Sample performance for PPV (a) training performance of ANN in 1,000 epoch  
(b) comparison of training and testing performances for ANN (c) comparison of 
training and testing performances for DT (see online version for colours) 

 
(a) 

  
(b)     (c) 
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Figure 4 Performance metrics for PPV (a) correlation coefficient (b) RMSE (c) MAE (d) relative 
over estimation (e) relative under estimation (f) median absolute relative error [from L 
to R: SVM, RF, DT, ANN] (see online version for colours) 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

 

 



   

 

   

   
 

   

   

 

   

   52 S. Dauji    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Performance metrics for FDF (a) correlation coefficient (b) RMSE(c) MAE (d) relative 
over estimation (e) relative under estimation (f) median absolute relative error [from L 
to R: SVM, RF, DT, ANN] (see online version for colours) 

  
(a)     (b) 

  
(c)      (d) 

  
(e)      (f) 
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Figure 6 Performance metrics for DurFDF (a) correlation coefficient (b) RMSE (c) MAE  
(d) relative over estimation (e) relative under estimation (f) median absolute relative 
error [from L to R: SVM, RF, DT, ANN] (see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

  
(e)     (f) 
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4 Discussions 

The individual relative errors for testing data obtained with DT were compared to those 
obtained with ANN in Figure 7 for PPV, Figure 8 for FDF, and Figure 9 for DurFDF. It 
was noteworthy that the limits of relative errors in ANN models were higher than the DT 
models. This was true even for model for PPV, for which the overall performance of 
ANN models were better than the DT models. This could have been due to the limited 
number of training sets (93) and hidden neurons (two) used for ANN in this study, which 
could be sub-optimal for the number of inputs (nine) and one output. 

Figure 7 Individual relative errors for PPV: DT and ANN [L to R] (see online version  
for colours) 

 

Figure 8 Individual relative errors for FDF: DT and ANN [L to R] (see online version  
for colours) 
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Figure 9 Individual relative errors for DurFDF: DT and ANN [L to R] (see online version  
for colours) 

 

From the results, it was concluded that overall performance of both the tools explored in 
this study, namely, DT and ANN, was better than the tools reported in literature (SVM 
and RF) (Longjun et al., 2011) in case of all the three target variables, namely, PPV, 
FDF, and DurFDF. This study highlighted the fact that different data mining tools could 
be suited for different target variables, in the same data set. In general, the ANN model 
was better suited for PPV, whereas the DT models were superior in case of FDF and 
DurFDF. It must be mentioned here that even in case of PPV, the DT models yielded 
comparable correlation and lower errors than those reported in literature (Longjun et al., 
2011) with SVM and RF. 

The relatively better performance of the models developed in this study with ANN 
and DT, when compared to those reported in literature for the same data (SVM and RF) 
(Longjun et al., 2011) could be due to the simpler model structure adopted in this study, 
with individual model for each variable. This aspect would be particularly important 
when dealing with limited datasets for development of the models. A possible reason for 
the better performance of the DT could be the basic approach of domain subdivision 
implemented for DT. The approach of all other three tools (ANN, SVM, or RF) was to 
arrive at the generalised model for the entire model space. Particularly, the generalised 
models with ANN in this study could not possibly achieve the most optimal architecture 
and/or weight-bias values due to the limitation of the data. With larger data, the relative 
performance of DT and ANN might vary. However, as trial blast records are generally 
limited in number, DT would emerge as useful tool in prediction of ground vibration 
variables for underground blasts. Henceforth, DT can be gainfully employed in design of 
controlled blasting for large-scale excavation, tunnelling, or mining applications, due to 
its higher accuracy and ease of implementation. 
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5 Summary and conclusions 

The development of vibration attenuation relationship for underground blasts is an 
important step for design of controlled blasting for large-scale excavation, tunnelling or  
mining activities. The safety and regulatory stipulations require limiting the PPV and/or 
the frequency experienced near the existing structures to a certain value and this could 
only be achieved with accurate prediction of the ground vibration variables for a given 
underground blast. The data driven approaches offer the advantage of flexibility in model 
development and noise tolerance when compared with the empirical or numerical 
approaches. 

Prediction of ground vibration variables for underground blast was reported in 
literature (Longjun et al., 2011) with SVM and RF algorithm, wherein nine input 
variables were considered. The variables were charging amount at one time; total 
charging amount; horizontal distance; elevation difference; resistance line; presplit 
blasting effect; rock mass structure; comparative distance between measured point and 
explosive region; and explosive type. The target (or output) variables were PPV, FDF, 
and its duration. A single model was developed with nine inputs and three outputs with 
each of the tools. 

In this study, same data was taken and prediction models were developed separately 
for each target variable with the objective of achieving better generalisation and accuracy 
in predictions. The prediction models were based on two different soft computing tools: 
erstwhile-unexploited DT and universally popular ANN. The overall error measures were 
reported for the models developed in this study (DT and ANN) as well as those reported 
in literature (SVM and RF) (Longjun et al., 2011). From the study, the following 
conclusions were drawn: 

• Different soft computing tools could yield most accurate results for different target 
variables for a given location. 

• When dealing with limited data, employment of simpler models (for example, 
separate models for each individual output variable) could result in better prediction 
accuracy. 

• In this case, the particle velocity variable, namely, PPV was best predicted with 
ANN, closely followed by DT, as indicated by higher correlation and lower errors. 
The correlation of SVM model reported in literature (Longjun et al., 2011) was 
comparable, but was accompanied by much higher errors. The RF model (Longjun  
et al., 2011) was poor in performance from all respects. 

• The frequency variables, namely FDF and DurFDF, were better predicted by DT, as 
indicated by higher correlation and lower errors. This performance was closely 
followed by ANN, and was much superior to the performance of SVM or RF models 
reported in literature (Longjun et al., 2011). 

• The performance of ANN models may be improved in case of availability of larger 
data set, such that optimal network architecture and training could be achieved. 

• For limited data, the approach of model domain subdivision and piecewise linear 
models in each subdomain of DT appeared to be very efficient for the variables 
under consideration. This was in contrast with the other tools (ANN: this study; 
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SVM and RF: literature) wherein a generalised model was sought for the entire 
domain. Additionally, DT model had the advantage of clear-cut decision rules for 
easy comprehension and implementation. 

It is suggested that for any given problem, a variety of soft computing tools need to be 
examined in terms of different overall error metrics, and the model considered best in 
terms of accuracy and ease of practical application could thereafter be selected for 
implementation. 

Acknowledgements 

The author highly appreciated the sharing of entire research data by Longjun et al. 
(2011), without which this study could not have been undertaken. The author is grateful 
to the anonymous reviewers for their critical review comments and suggestions which 
immensely helped to improve the manuscript in terms of technical clarity and 
presentation. 

This research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 

References 
Ayaz, Y., Kocamaz, A.F. and Karakoc, M.B. (2015) ‘Modeling of compressive strength and UPV 

of high-volume mineral-admixtured concrete using rule-based M5 rule and tree model M5’ 
classifiers’, Construction and Building Materials, September, Vol. 94, pp.235–240. 

Behnood, A., Olek, J. and Glinicki, M.A. (2015) ‘Predicting modulus elasticity of recycled 
aggregate concrete using M5’ model tree algorithm’, Construction and Building Materials, 
September, Vol. 94, pp.137–147. 

Bose, N.K. and Liang, P. (1993) Neural Networks Fundamentals with Graphs, Algorithms, and 
Applications, Tata-McGraw-Hill Publishing Company Limited, New Delhi. 

Dauji, S. (2016) ‘Prediction of compressive strength of concrete with decision trees’, International 
Journal of Concrete Technology, Vol. 2, No. 1, pp.19–29. 

Dauji, S. (2018) ‘New approach for identification of suitable vibration attenuation relationship  
for underground blast’, Engineering Journal, Vol. 22, No. 4, pp.147–159,  
DOI: http://dx.doi.org/10.4186/ej.2018.22.4.147. 

Dauji, S. (2019) ‘Estimation of capacity of eccentrically loaded single angle struts with  
decision trees’, Challenge Journal of Structural Mechanics, Vol. 5, No. 1, pp.1–8,  
DOI: https://doi.org/10.20528/cjsmec.2019.01.001 

Dindarloo, S.R. and Siami-Irdemoosa, E. (2015) ‘Ground rippability classification by decision 
trees’, Transactions for the Society of Mining, Metallurgy, and Exploration, Vol. 338,  
pp.492–501. 

Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Mohamad, E.T. (2016) ‘Genetic 
programming and gene expression programming for flyrock assessment due to mine blasting’, 
International Journal of Rock Mechanics & Mining Sciences, Vol. 88, pp.254–264, DOI: 
http://dx.doi.org/10.1016/j.ijrmms.2016.07.028. 

Garg, N.K., Deo, M.C. and Kumar, V.S. (2008) ‘Short term prediction of coastal currents using 
model trees’, Proceedings of the Indian National Conference on Advances in Hydraulic 
Engineering: Hydro 2008, India, pp.250–256. 

 



   

 

   

   
 

   

   

 

   

   58 S. Dauji    
 

    
 
 

   

   
 

   

   

 

   

       
 

Gharaei-Manesh, S., Fathzadeh, A. and Taghizadeh-Mehrjardi, R. (2016) ‘Comparison of artificial 
neural network and decision tree models in estimating spatial distribution of snow depth in a 
semi-arid region of Iran’, Cold Regions Science and Technology, February Vol. 122,  
pp.26–35. 

Hao, H. and Wu, C. (2005a) ‘Numerical study of characteristics of underground blast induced 
surface ground motion and their effect on above-ground structures, Part I: ground  
motion characteristics’, Soil Dynamics and Earthquake Engineering, Vol. 25, pp.27–38,  
DOI: http://dx.doi.org/10.1016/j.soildyn.2004.08.001. 

Hao, H. and Wu, C. (2005b) ‘Numerical study of characteristics of underground blast induced 
surface ground motion and their effect on above-ground structures, Part II: effects on 
structural responses’, Soil Dynamics and Earthquake Engineering, Vol. 25, pp.39–53,  
DOI: http://dx.doi.org/10.1016/j.soildyn.2004.08.002. 

Haykin, S.O. (2008) Neural Networks and Machine Learning, Pearson Education, New Delhi. 
IS 6922: 1973 (reaffirmed 2003) Criteria for Safety and Design of Structures Subject to 

Underground Blasts, Bureau of Indian Standards, New Delhi. 
Jang, H. and Topal, E. (2013) ‘Optimizing overbreak prediction based on geological  

parameters comparing multiple regression analysis and artificial neural network’,  
Tunnelling and Underground Space Technology, Vol. 38, pp.161–169,  
DOI: http://dx.doi.org/10.1016/j.tust.2013.06.003. 

Jekabsons, G. (2016) ‘M5 PrimeLab: M5’ regression tree, model tree, and tree ensemble toolbox 
for Matlab/Octave’ [online] http://www.cs.rtu.lv/jekabsons/(accessed 24 December 2017). 

Kalayki, U. and Ozer, U. (2016) ‘Selection of site specific vibration equation by using analytical 
hierarchy process in a quarry’, Environmental Impact Assessment Review, Vol. 56, pp.50–59, 
DOI: http://dx.doi.org/10.1016/j.eiar.2015.09.004. 

Khandelwal, M. and Singh, T.N. (2009) ‘Prediction of blast-induced ground vibration using 
artificial neural network’, International Journal of Rock Mechanics & Mining Sciences,  
Vol. 46, pp.1214–1222, DOI: http://dx.doi.org/10.1016/j.ijrmms.2009.03.004. 

Kim, J.W. and Pachepsky, Y.A. (2010) ‘Reconstructing missing daily precipitation data using 
regression trees and artificial neural networks for SWAT streamflow simulation’, Journal of 
Hydrology, Vol. 394, Nos. 3–4, pp.305–314. 

Liu, K., Hao, H. and Li, X. (2017) ‘Numerical analysis of the stability of abandoned cavities in 
bench blasting’, International Journal of Rock Mechanics & Mining Sciences, Vol. 92,  
pp.30–39, DOI: http://dx.doi.org/10.1016/j.ijrmms.2016.12.008. 

Longjun, D., Xibing, L., Ming, X. and Qiyue, L. (2011) ‘Comparisons of random forest and 
support vector machine for predicting blasting vibration characteristic parameters’, Procedia 
Engineering, Vol. 26, pp.1772–1781, DOI: http://dx.doi.org/10.1016/j.proeng.2011.11.2366. 

Ma, G.W. and An, X.M. (2008) ‘Numerical simulation of blasting-induced rock fractures’, 
International Journal of Rock Mechanics & Mining Sciences, Vol. 45, pp.66–975,  
DOI: http://dx.doi.org/10.1016/j.ijrmms.2007.12.002. 

Mohamadnejad, M., Gholami, R. and Ataei, M. (2012) ‘Comparison of intelligence  
science techniques and empirical methods for prediction of blasting vibrations’, Tunnelling 
and Underground Space Technology, Vol. 28, pp.238–244,  
DOI: http://dx.doi.org/10.1016/j.tust.2011.12.001. 

Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A. and Salimi, A.R. (2010) ‘Predicting  
blast-induced ground vibration using various types of neural networks’, Soil  
Dynamics and Earthquake Engineering, Vol. 30, No. 11, pp.1233–1236,  
DOI: http://dx.doi.org/10.1016/j.soildyn.2010.05.005. 

Monjezi, M., Ghafurikalajahi, M. and Bahrami, A. (2011) ‘Prediction of blast-induced ground 
vibration using artificial neural networks’, Tunnelling and Underground Space Technology, 
Vol. 26, pp.46–50, DOI: https://doi.org/10.1016/j.tust.2010.05.002. 



   

 

   

   
 

   

   

 

   

    Prediction accuracy of underground blast variables 59    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Mottahedi, A., Sereshki, F. and Ataei, M.(2018) ‘Overbreak prediction in underground excavations 
using hybrid ANFIS-PSO model’, Tunnelling and Underground Space Technology, Vol. 80, 
pp.1–9, DOI: https://doi.org/10.1016/j.tust.2018.05.023. 

Quinlan, J.R. (1992) C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco. 
Ray, S., Dauji, S., Dutta, D. and Bhargava, K. (2018) ‘Development of empirical model for 

estimation of peak particle velocity for underground blasts’, in Singh, S.B. (Eds.): Advances in 
Concrete, Structural and Geotechnical Engineering, pp.196–200, Bloomsbury Publishing 
India Pvt. Ltd., New Delhi, India. 

Ray, S. and Dauji, S. (2019) ‘Ground vibration attenuation relationship for underground blast: a 
case study’, Journal of Institution of Engineers (India), DOI: https://doi.org/10.1007/s40030-
019-00382-y. 

Rokach, L. and Maimon, O. (2015) Data Mining with Decision Trees: Theory and Applications, 
World Scientific, Singapore. 

Saadat, M., Khandelwal, M. and Monjezi, M. (2014) ‘An ANN-based approach to predict  
blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran’, Journal of Rock 
Mechanics and Geotechnical Engineering, Vol. 6, pp.67–76, DOI: 
http://dx.doi.org/10.1016/j.jrmge.2013.11.001. 

Sivandi-pour, A. and Farsangi, E.N. (2019) ‘Statistical prediction of probable seismic hazard 
zonation of Iran using self-organized artificial intelligence model’, International Journal of 
Engineering Transactions A: Basics, Vol. 32, No. 4, pp.467–473. 

Sivandi-pour, A., Gerami, M. and Kheyroddin, A. (2015) ‘Determination of modal damping ratios 
for non-classically damped rehabilitated steel structures’, Iranian Journal of Science and 
Technology: Transactions of Civil Engineering, Vol. 39, No. C1, pp.81–92. 

Solomatine, D.P. and Xue, Y. (2004) ‘M5 Model trees compared to neural networks: application to 
flood forecasting in the Upper Reach of the Huai River in China’, ASCE Journal of 
Hydrologic Engineering, Vol. 9, No. 4, pp.491–501. 

Tiryaki, B. (2008) ‘Predicting intact rock strength for mechanical excavation using multivariate 
statistics, artificial neural networks, and regression trees’, Engineering Geology, Vol. 99, 
pp.51–60, DOI: http://dx.doi.org/10.1016/j.enggeo.2008.02.003. 

Tripathy, G.R. and Shirke, R.R. (2015) ‘Underwater drilling and blasting for hard rock  
dredging in Indian ports – a case study’, Aquatic Procedia, Vol. 4, pp.248–255,  
DOI: http://dx.doi.org/10.1016/j.aqpro.2015.02.034. 

Tripathy, G.R., Shirke, R.R. and Kudale, M.D. (2016) ‘Safety of engineered structures against blast 
vibrations: a case study’, Journal of Rock Mechanics and Geotechnical Engineering, pp.1–8, 
DOI: http://dx.doi.org/10.1016/j.jrmge.2015.10.007. 

Wasserman, P.D. (1993) Advanced Methods in Neural Computing, Van Nostrand Reinhold 
Company, New York. 

Witten, I.H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and Techniques, 
Morgan Kaufmann, San Francisco. 

Yilmaz, O. and Unlu, T. (2013) ‘Three dimensional numerical rock damage analysis under blasting 
load’, Tunnelling and Underground Space Technology, Vol. 38, pp.266–278, DOI: 
http://dx.doi.org/10.1016/j.tust.2013.07.007. 


