Design and evaluation of a passive inertial mass device for car suspension system
by Shuai Yang; Natalie Baddour; Chuan Li
International Journal of Vehicle Design (IJVD), Vol. 80, No. 1, 2019

Abstract: A new adaptive nylon flywheel is proposed, which can achieve passive vibration control by generating variable equivalent mass. With changing rotational speed, the location of sliders in the slots changes, which leads to the creation of variable equivalent mass. Due to the light weight and high strength of the nylon material, a higher changing ratio of equivalent mass can be achieved. To verify the performance of the adaptive nylon flywheel, the inverse screw system was applied. By using zero, impulse and sinusoidal input as road excitation, the proposed car suspension system was evaluated from riding comfort and tyre grip. Simulation results show the proposed suspension system provides better performance than traditional suspension systems under most circumstances.

Online publication date: Tue, 11-Feb-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com