Optimal trajectory design and analysis for soft landing on the moon from lunar parking orbits
by Santosh Kumar Choudhary; Kaushik Raj; Venkatesan Muthukumar
International Journal of Space Science and Engineering (IJSPACESE), Vol. 5, No. 4, 2019

Abstract: This article studies the optimal control solution of the Moon-Lander problem. The main purpose of this article is to investigate the optimal strategy for trajectory design to ensure the soft landing of the lander from the Lunar parking orbit to the lunar surface with minimum consumption of fuel. The trajectory design of lunar lander is studied via two cases by formulating the optimal control problems, where specific requirements of this soft landing problem are all incorporated in the problem formulation. To analyse the proposed optimal strategies for a soft landing the paper briefly illustrates the numerical simulation results and it shows that the required velocity for the soft landing is achieved with minimum fuel consumption. The investigated computational methods for the optimal solutions of the Moon-Lander problem in both two cases are conceptually simple and efficient.

Online publication date: Tue, 11-Feb-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space Science and Engineering (IJSPACESE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com