Extrapolating the effect of non-synonymous SNP in bread wheat HSP16.9B gene: a molecular modelling and dynamics study
by Bharati Pandey; Saurabh Gupta; Atmakuri Ramakrishna Rao; Dev Mani Pandey; Ravish Chatrath
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 16, No. 1, 2020

Abstract: Small heat shock proteins (sHSP) are molecular chaperons which play a key role in protein homeostasis under stress conditions. Point mutation of aspartic acid (D) substitution for asparagine (N) at residue 11 (D11N) in HSP16.9B protein was predicted in HSP16.9B gene in wheat. However, its impact on protein function and structural consequences has not been explored. In this study, we examined the effect of point mutation using molecular modelling and molecular dynamics (MD) simulations. Moreover, point mutation induced addition of beta-sheet before the mutation position in the mutant protein. Three-dimensional homology protein modelling, structure validation, and molecular dynamics were carried out to investigate the conformational transitions and dynamics of the HSP16.9B protein due to D11N non-synonymous single nucleotide polymorphism (nsSNP). The MD results indicated that the stability of the mutant protein structure during entire simulation runs. Altogether, our investigation will provide useful understanding related to structural and functional basis of HSP16.9.

Online publication date: Wed, 05-Feb-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com