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Abstract: Electroencephalography (EEG) is the process of recording the 
complex activity of the brain in the form of signals. EEG primarily has delta, 
theta, alpha, beta and gamma frequency bands whose presence and strength 
describes changes in brain under different kinds of activities. On the other hand 
alcohol consumption leads to depression and confusion which reduces the 
activity of the nervous system thereby affecting the brain. Alcoholics are 
identified from normal persons by multi-resolution and multi-scale analysis of 
EEG. In our research, EEG is decomposed into sub frequency bands using 
wavelet. The effect of alcohol on each of these wave bands is identified using 
power spectral density analysis. These evident variations in EEG are 
manifested due to depression in brain activity caused by intake of alcohol. The 
first order and second order statistical measures of the EEG signal are  
selected as features. Classifiers such as Bayes, Naive Bayes, radial basis 
function network (RBFN), multilayer perceptron (MLP) and extreme learning 
machine (ELM) are used for classification. Results show that our proposed 
EEG analysis acts as an effective bio-marker for differentiating alcoholics from 
non-alcoholics and extreme learning machine provides higher classification 
efficiency (87.6%) compared to other classifiers used. 
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1 Introduction 

Brain acts as a central control and data processing unit for the biological medium. It 
produces our every thought, action, memory, feeling and experience of the world. Brain 
consists of staggering one hundred billion nerve cells or neurons. The neuronal elements 
(dentrites, somata and axons) of each of these billions of neurons generate a small 
amount of electrical charge as a result of excitation of the brain for an activity. The 
process of mapping this electrical activity of the brain onto a graph is called 
electroencephalography (EEG). It records the potential fluctuations generated due to 
neuronal current generators in the brain. The field potentials recorded are the aggregates 
of neuronal elements with complex interconnections. The intensity and the patterns of the 
recorded potentials depend on the overall excitation of the brain. 

EEG consists of four major brain waves at different frequency ranges which are 
prominent under diverse activities. They are alpha (8–12 Hz), beta (12–32 Hz), theta  
(4–8 Hz) delta (0–4 Hz) which is intense at occipital, parietal, frontal and cortex regions 
respectively. The alpha waves are prominent in normal awake persons in quiet and 
pleasant environment. Beta waves occur during intense mental activity. Theta waves 
occur prominently in children and during emotional stress in adults. Delta waves occur in 
deep sleep. 

EEG as an effective diagnostic tool finds wide applications in studying the response 
of the brain, assessing alertness and detecting disease like epilepsy and seizures. Alcohol, 
the most widely consumed drug worldwide greatly decreases the brain activity. Also 
alcohol dependants face numerous health consequences due to increase in the level of 
norepinephrine, the neurotransmitter responsible for heightened excitement. The regions 
of the brain that suffers maximum decrease in activity are the prefrontal cortex and 
temporal cortex. These are the regions responsible for decision making and forming new 
memories. EEG is best suited to visualise this decrease in brain activity (Begleiter and 
Platz, 1972; Hommer et al., 2001). 

Many researchers have conducted studies to determine the effect of alcohol on human 
brain activity using EEG. Wu Di et al. (2010) analysed EEG using power spectral 
density. He found out that with the increase in the amount of alcohol intake, the power of 
the EEG signal decreases in frontal region and increases in central, occipital region. 
Yazdani and Kamaledin (2007) further went on to classify EEG of alcoholics from non-
alcoholics. He used different statistical classifiers such as Bayes classifier, k-nearest 
neighbour classifier and minimum mean distance classifier. While Nazari Kousarrizi  
et al. (2009) classified the EEG of alcoholics and non-alcoholics using support vector 
machine and multilayer perceptron network. 
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In this paper, we propose a novel technique to classify alcoholics and non-alcoholics 
using EEG. We perform wavelet decomposition of EEG to separate information section 
from noise and extract different wave bands. Power spectral analysis of each wave bands 
of EEG is done to validate the effect induced by alcohol on human brain. Then the first 
order and second order statistical features are extracted from the wave bands. These 
features are used to train and test the classifiers. 

We use set of supervised classifiers namely Bayes network, Naive Bayes network, 
RBFN, MLP and ELM to test the effectiveness of classification. In this study we find 
extracted wavelet features that are classified using ELM produces relatively better 
classification accuracy with a significant reduction in training time. It also avoids 
problems like local minima, improper learning rate and over fitting which the other 
networks experience. 

The forthcoming part of the article is organised as follows: Section 2 presents the 
materials and methods of the proposed system. Section 3 discusses the details of 
classification of EEG. Section 4 explains the performance of classifiers required to be 
evaluated in order to compare their sensitivity, specificity along with overall accuracy. 
Section 5 shows performance evaluation and results and Section 6 provides the 
conclusion. 

2 Materials and methods 

2.1 Data collection 

The EEG database is acquired from standard EEG database of State University of  
New York health centre. This database consists of measurements of 64 electrodes placed 
on various location on the scalp of the subject and is sampled at 256 Hz. There were two 
groups of subjects: alcoholic and control. The alcoholic subjects refer to persons who 
have genetic predisposition to alcoholism. Most of the alcoholics had been drinking 
heavily for a minimum of 15 years and started drinking at approximately 20 years of age. 
The alcoholics were non-amnesic and also not substance abusers. They were also 
matched for socioeconomic status. The control subjects had no personal and no family 
history of alcohol and/or drug abuse or any history of neurological or psychiatric disease. 
Totally 2,560 datasets are used; out of which 50% of them are alcoholic data while other 
50% being non-alcoholic data (Malar et al., 2011). This data is decomposed using 
wavelet decomposition and first and second order statistical features are extracted for 
further processing. The distribution of the data collected is presented in Tables 1 and 2. 

Table 1 Distribution of dataset 

Type of data Training dataset Testing dataset 

Alcoholic data 800 480 

Non-alcoholic data 800 480 

Total 1,600 960 
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Table 2 List of features extracted 

S. no. Feature Formula 

1 Mean absolute value 
1

1

2

N

i
xi

  

2 Variance σ2 = E{x2} – E2{x}  

3 Zero crossing Xi > 0 and Xi+1 < 0 or Xi < 0 and Xi+1 > 0 

4 Slope sign change Xi > Xi–1 and Xi+1 < Xi or Xi < Xi–1 and Xi+1 > Xi 

5 Entropy –(h * log2 (h)), where h is histogram count 

6 Energy [x(i)]2 

7 Norm maximum(sum(absolute(x))) 

2.2 Power spectral analysis of EEG 

In order to understand the extent of effect brought about by the intake of alcohol, the 
power spectral density of the EEG pertaining to alcoholic person is analysed. Power 
spectral density is the analysis of power of the signal that gives measure of strength of the 
signal. This analysis is extended to individual wave bands of EEG to illustrate the effect 
on it. Figures 1–4 give a comparison of power spectral density of EEG of alcoholic and 
non- alcoholic person. 

Figure 1 EEG of normal person (blue) vs. alcoholic person (red) (see online version for colours) 
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Figure 2 Power spectrum density of beta wave of normal person (blue) and alcoholic person 
(red) (see online version for colours) 

 

Figure 3 Power spectrum density of alpha wave of normal person (blue) and alcoholic person 
(red) (see online version for colours) 
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Figure 4 Power spectrum density of theta wave of normal person (blue) and alcoholic person 
(red) (see online version for colours) 

 

It is evident from the above study that intake of alcohol has an appreciable effect on 
EEG. It can be noticed that after consuming alcohol: theta (θ) waves begin to appear and 
gradually enhances (as subjects enter in to a state of sleepy and also central nervous 
system is inhibited), alpha () waves gradually decreases and the region of alpha () 
waves is expanded, beta () waves gradually enhanced and the area of beta () waves are 
expanded (as cerebral cortex remains in an excitable condition) (Zhang et al., 1997). 

As alcohol is susceptible to affect brain activity and subsequent brain waves, distinct 
changes can be mapped in EEG. These changes can be utilised to differentiate alcoholics 
from non-alcoholics (Ocak, 2008). 

2.3  Wavelet decomposition 

For non-stationary waves like EEG, the wavelet decomposition is preferred as it gives 
precise frequency information at lower frequency and precise time information at higher 
frequency. The EEG data taken into consideration is sampled at 256 Hz. The useful 
frequency range is (0–60) Hz and the higher frequency range is considered to be noise. 
Therefore, it is required to eliminate higher frequencies. 

Two levels wavelet decomposition with Daubechies mother wavelet of order 10 is 
employed. After the first level of decomposition, the original EEG data with frequency 
range (0–256) Hz is decomposed into d1, higher resolution components (128–256) Hz 
and a1, lower resolution components (0–128) Hz. In the second level decomposition, a1 
is decomposed to a2, lower resolution component (0–64) Hz and d2, higher resolution 
component (64–128) Hz. This a2 component of EEG data is the required useful part of 
the EEG which comprises of the wave bands – alpha, beta, theta, delta and gamma. 

To obtain the individual wave bands, a2 component is further decomposed into a3, 
lower resolution component (0–32) Hz and d3, higher resolution component (32–64 Hz). 
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The d3 component corresponds to gamma band of the EEG. The a3 component is 
decomposed to a4 and d4, further a4 into a5 and d5 and a5 into a6 and d6. The d4, higher 
resolution component (16–32 Hz) of a3 corresponds to beta band of the EEG, the d5, 
higher resolution component (8–16 Hz) of a4 corresponds to alpha band of the EEG, the 
d6, higher resolution component (4–8 Hz) of a5 corresponds to theta band of the EEG 
while the a6, lower resolution component (0–4 Hz) of a5 corresponds to delta band of the 
EEG (Huang et al., 2006a). The first and second level of decomposition is shown in 
Figures 5 and 6 respectively. 

Figure 5 First level of wavelet decomposition of the signal (see online version for colours) 
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Figure 6 Second level of wavelet decomposition of the signal (see online version for colours) 
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The block diagram of the proposed methodology to separate alcoholics from  
non-alcoholics is shown in Figure 7. 
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Figure 7 Block diagram of the proposed methodology 
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Figure 8 Structure of ELM network 
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3 EEG classifications 

An artificial neural network is an emulation of biological neural system. It is a parallel 
system, capable of resolving complex problems. The greatest advantage over other hard 
computing classifiers is that it is tolerant to missing data, mistakes in the data and allows 
approximation of the data. Adding to that, generally it has higher efficiency compared to 
others. 

The performance of our automatic alcoholic and non alcoholic classification system 
in this study is evaluated by the probabilistic classifiers: Bayes classifier, Naïve Bayes 
classifier and neural networks: ELM, RBFN and MLP. 

3.1 Bayes and Naïve Bayes classifiers 

Bayesian decision theory is a fundamental statistical approach to the problem of pattern 
classification. It makes the assumption that the decision problem is posed in probabilistic 
terms, and that all of the relevant probability values are known. It encodes dependencies 
among all variables and readily handles situations where some data entries are missing. 
Naïve bayes classifier is also a probabilistic classifier based on Bayes theorem. This 
classifier assumes that the effect of value of each attribute on a given class is independent 
of value of other attributes. This is known as conditional independency. An advantage of 
the Naive Bayes classifier is that it only requires a small amount of training data to 
estimate the parameters (means and variances of the variables) necessary for 
classification. Because independent variables are assumed, only the variances of the 
variables for each class need to be determined and not the entire covariance matrix. 

3.2 Extreme learning machine 

The ability of the neural network to produce greater classification efficiency is the most 
celebrated aspect of using neural network. The time taken for computation is as important 
aspect for a classifier is as efficiency is. Number of algorithms has been used to develop 
neural networks and a major and a common disadvantage these algorithms pose is their 
learning speed. The slow learning rates may be attributed to their gradient descent or 
iterative approach in training the network. 

Recently, Huang et al. (2006b) proposed a new learning algorithm named extreme 
learning machine which reduces the computational time substantially yet not 
compromising on efficiency. This algorithm as proposed by Huang et al. uses single layer 
feed forward network architecture (SLFN) (Malar et al., 2012; Suresh et al., 2010). 

3.3 Radial basis function neural network 

Radial basis function network (RBFN) is a type of artificial neural network. It has a feed 
forward architecture with an input layer, a hidden layer, and an output layer. It is applied 
to the problems of supervised learning and associated with radial basis functions. 
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3.4 Multilayer perceptron 

The design of the MLP is completely characterised by an input layer, one or more hidden 
layers, and an output layer. All layers consist of at least one neuron. Analytically, the 
MLP performs a nonlinear approximation using sigmoidal kernel functions as hidden 
units and linear weights. During the training of feature vectors, the weights are 
continuously tailored by diminishing the error between desired outputs and the computed 
outputs. MLPs are highly nonlinear interconnected systems and serve for both nonlinear 
function approximation and nonlinear classification tasks. 

4 Performance analysis 

In general the performance of classifiers is required to be evaluated in order to compare 
their sensitivity, specificity along with overall accuracy. For this analysis, usually the 
following confusion matrix in Table 3 is designed based on the trade-off between actual 
and classifier generated outputs. Also the performance of the classifiers is tested as per 
the specifications in Table 4. 

Table 3 Confusion matrix 

Classifier output Non-alcoholic Alcoholic 

Positive TP FP 

Negative FN TN 

Table 4 ELM based alcoholic and non alcoholic classification system specification 

Classifier Number of hidden layer Lambda (λ) Activation function 

ELM 100 1 Gaussian 

Sensitivity: it is a measure of accuracy of identification of alcoholics. It is mathematically 
defined as 

Sensitivity
TP

TP TN



 (1) 

Specificity: it is a measure of accuracy of identification of non-alcoholics. It is 
mathematically defined as 

Specificity
TN

FP TN



 (2) 

Precision: it is a measure of repeatability of true classification (Non-alcoholic). It is 
mathematically defined as 

Precision ( )r
TP

P
TP FP




 (3) 

Accuracy: it is a measure of exactness of true classification (Non-alcoholic and 
alcoholic). It is mathematically defined as 
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Accuracy ( )c
TP TN

A
P N





 (4) 

where 

True positive (TP) Person predicted alcoholic when really consumed 

True negative (TN) Person predicted alcoholic when not consumed 

False positive (FP) Person predicted non-alcoholic when really consumed 

False negative (FN) Person predicted non-alcoholic when not consumed 

5 Results and discussions 

We have evaluated the performance of the our proposed alcoholic and non-alcoholic 
classification system using 1,600 datasets for training the network in which 800 samples 
are of alcoholic while remaining 800 belong to non-alcoholic. Then 960 datasets are used 
for testing the network which comprised of 480 alcoholic and 480 non-alcoholics. Here 
we have used the classifiers: Bayes net, Naive Bayes, RBF network, multilayer 
perceptron and extreme learning machine. Performances of the classifiers used are given 
in Table 5. 

Table 5 Performance analysis of classifiers 

S. no. Classifier Sensitivity Specificity Precision Accuracy Training 
efficiency 

Testing 
efficiency 

1 Naive Bayes net 75.81% 77.42% 77.70% 76.46% 85.93% 76.46% 

2 Bayes net 77% 79.34% 80.20% 78.12% 86% 78.12% 

3 RBF network 72.49% 71.48% 70.83% 71.9% 83.31% 71.9% 

4 Multilayer perceptron 72.18% 73.03% 73.54% 72.60% 82.93% 72.60% 

5 Extreme learning 
machine 

87.37% 87.84% 87.91% 87.6% 95.3% 87.6% 

The graph shown in Figure 9 compares the training and testing efficiency of all the 
classifiers used. 

Figure 9 Performance comparisons of the classifiers (see online version for colours) 
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From the above results, we conclude that the ELM classifier outperforms others. Further, 
the performance of ELM is assessed using three different activation functions – unipolar 
sigmoidal, bipolar sigmoidal and Gaussian. Training and testing efficiency of the network 
for various activation functions is evaluated for different numbers of hidden neurons and 
different values of lambda, a parameter in the activation function that determine the 
threshold. Number of hidden neurons is varied from 0 to 100 while the value of lambda 
was incremented from 0.1 to 1. Each combination is evaluated for 20 trials and average 
efficiency was calculated. The performances of ELM for all the possible combinations 
are depicted in the 3D plots shown in Figures 10–15. 

Figure 10 ELM training efficiency under unipolar sigmoidal activation function (see online 
version for colours) 
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Figure 11 ELM testing efficiency under unipolar sigmoidal activation function (see online 
version for colours) 
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Figure 12 ELM training efficiency under bipolar sigmoidal activation function (see online 
version for colours) 
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Figure 13 ELM testing efficiency under bipolar sigmoidal activation function (see online version 
for colours) 
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ELM with Gaussian activation function has consistency over the classification efficiency 
for different combinations of hidden neurons and the value of lambda compared to other 
two activation functions. Table 5 compares the maximum training and testing efficiency 
of the three activation functions. In Table 6, a comparison of existing methods in 
identification of alcoholics is provided. 

 



   

 

   

   
 

   

   

 

   

   16 E. Malar and M. Gauthaam    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 14 ELM training efficiency under Gaussian activation function (see online version  
for colours) 
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Figure 15 ELM testing efficiency under Gaussian activation function (see online version  
for colours) 
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Table 6 Performance of ELM under unipolar sigmoidal, bipolar sigmoidal and Gaussian 
activation function 

S. no. Activation function Maximum training 
efficiency 

Maximum testing 
efficiency 

1 Unipolar sigmoidal 95.2% 87.3% 

2 Bipolar sigmoidal 95.2% 87.5% 

3 Gaussian 95.3% 87.6% 
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Table 7 Comparison of existing methods in identification of alcoholics 

Authors Classifier No. of samples No. of features Accuracy 

Palaniappan (2007) MLP 800 123 91.25% 

Damousis et al. (2011) SVM 80 19 85% 

Proposed method ELM 2,560 7 87.6% 

Palaniappan (2007) used 800 samples of the same database to classify alcoholic and  
non-alcoholic. Nearly 123 features of EEG are employed in a multilayer perceptron 
neural network. Though classification accuracy of 91.25% is achieved, use of large 
number of features increases the computational time of the network. Damousis et al. 
(2011) used different data set to categorise alcoholics and obtained an accuracy of 85%. 
Almost 80 samples and 19 features of EEG data are used for classification. Here the 
number of samples used is very much less when compared to the proposed method. And 
also number of features used is large. 

6 Conclusions 

Electroencephalograph can be used as a tool to differentiate alcoholics from  
non-alcoholics. The ground truth that EEG is influenced by alcohol intake is validated 
through power spectral density analysis. Wavelet transforms were used to extract the 
useful section of EEG, the segment which includes tangible information from which 
statistical features were extracted. Classification was performed using classifiers such as 
Bayes, Naive Bayes, RBFN, MLP and ELM and is found out that ELM provides with 
higher rates of efficiency compared to other classifiers. Therefore the proposed system 
discriminates alcoholics from non-alcoholics with higher sensitivity, specificity, precision 
and accuracy. The proposed method can be used for screening chronic alcoholic subjects. 
According to the studies of Dr. Henry Begleiter, some neurophysiologic anomalies in 
chronic alcoholics were already present in their young offspring before any exposure to 
alcohol and drugs. Presence of this neural excitability is a predisposing factor leading to 
the development of alcoholism, substance abuse, conduct disorder and antisocial 
personality disorder (Begleiter and Platz, 1972). Therefore, automatic detection of 
chronic alcoholic will be welfare to the society and for certain job recruitments that 
require more concentration. 
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