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Abstract: Detection, discrimination and tracking of a target under a given 
dynamic environment is one of the main challenges of an integrated sensory 
system. A combination of two or more sensors will always provide a better 
position estimate rather than a single sensor. The advantages of multi-sensor 
data fusion over a conventional single sensor tracking are presented in this 
paper. Using state estimators from simple linear rustic filters to a complex 
nonlinear filter, the tracking of target performing three different motions with 
sensor noises are presented in this paper. RADAR and the infrared search and 
track (IRST) are the two sensors considered based on which a complete 
mathematical modelling and simulation of the sensor measurements and 
tracking methodologies are utilised. The extension of the paper also presents 
the image fusion techniques using a widely known technique known as 
principle component analysis method. The RMS errors in position as well as 
image error measurements are performed that shows the superiority of the multi 
sensor data fusion process. 
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1 Introduction 

A high degree of importance has been given to detection and tracking of targets for any 
aerospace guidance and control systems. For civilian sensors such as primary surveillance 
radar (PSR) and secondary surveillance radar (SSR), the tracking of incoming and 
departing airplanes is of utmost importance. In case of military sensors, there are 
sequences of successful tasks such as detection, discrimination, tracking and interception 
has to be done at high degree of accuracy (Mahafza, 2000). Out of many sensors, a digital 
processing technique such as pulse compressed-based phased array radars were 
introduced to achieve those tasks and one such an application is moving target indicating 
(MTI) radar (Minvielle, 2005). The targets information such as its relative range, azimuth 
and elevation, as well as its velocity is the primary sensor data necessary for tracking. 
Based on the type of scenario different tracking methodologies can be employed with 
different sensor technologies (Rodríguez-Canosa et al., 2014; Khalifa, 2013; Landsat 8, 
2013). For instance, network centric warfare is one of the key components of Department 
of Defence for the US forces to enhance the situational awareness in the battle space 
(Friedman, 2009). Also, the positioning and the installation of sensors vary on application 
of detection and tracking methods (Dimitrios, 2007) the purpose of which is to enhance 
the dominance of sensor fusion over single sensor tracking. Optical detection and 
tracking using optical and infrared cameras and thermal cameras are advancing in today’s 
vision-based applications even for targets having very less signature (Fabrizio, 2014). 
Many new modern technologies are developing sophisticated detection and tracking 
methods for better awareness and perception. One such as example is FLIR-based Argus  
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and Cerebrus integrated surveillance systems (FLIR the World’s Sixth Sense, 2016; 
CommandSpace Cereberus Datasheet, 2018). Nevertheless, irrespective of any modern 
technology the target track has to follow a closed loop system tracker due to inherent 
internal noises and external noises. Although the radar is an active sensor, it has a better 
resolution in range besides its poor resolution in angular measurements. But, where as, 
the infrared search and track (IRST) sensors being passive systems has good resolution in 
angular measurements. On the other hand a combination of one or more optical sensors 
and their fusion could also enhance the performance of optical detection and tracking. 
Utilising the fusion of same sensor configuration or different configuration is based on 
the fact that the entire target data may not be obtained with a single sensor, however, 
regardless of their inherent characteristics, the fusion process will always provide a better 
estimate of target information. With these insights Section 2 presents the mathematical 
models for the target and the sensor dynamics. Section 3 presents the state estimation 
methodology and the filtering algorithms. Section 4 explains the type of sensor fusion for 
radar and IRST sensors. Section 5 presents the results of the first version of this paper. 
Section 6 presents the PCA-based image fusion-based and the experimental analysis with 
image error measurements. 

2 Geometric relationship between sensors and target 

By assuming the location of the sensors on the same platform with a negligible distance 
and using flat earth approximation (Garwin, 1999) the geometric relationship between the 
sensor and the target is represented in a three-dimensional spherical coordinate system 
shown in Figure 1. 

Figure 1 3D spherical coordinate system 

 

Source: Nykamp DQ 

A combination of RADAR and FLIR which provides the targets relative range (r), 
azimuth (φ) and elevation (θ) can be obtained by considering different target motions 
(Lesson 2 – Projectile Motion; Weisstein; Gordon et al., 1993). A three dimensional 
representation of targets position, velocity and acceleration is shown in equation (1). 
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[ ]      Tz x x y y y z z z  (1) 

The mathematical notation of the LOS system measurements measured by class of LOS 
systems such as airborne RADAR, FLIR, TV, laser ranging, etc. (Grewal and Andrews, 
2001) are given by: 

2 2 2Δ Δ Δ= + +r x y z  (2) 

1 Δtan
Δ

−  =  
 

yψ
x

 (3) 

1
2 2

Δtan
Δ Δ

− − =  + 

zθ
x y

 (4) 

Here, the target is modelled as point object and the state variable form (Rogers, 2000) is 
used to represent the motion characteristics. For the purpose of simulation the initial 
detection of the target is taken as a random passive observation. 

3 Sensor model and formulation 

The RADAR and FLIR technical specifications for simulation can be taken from Fan  
et al. (2009) and Humali (2004). The measurement error for the RADAR is modelled 
after a Gaussian noise in which the variance in range and angle is given by (Keefer, 1989; 
Kondru and Celenk, 2018a, 2018b): 

2.5 2
=range

τσ
SNR

 (5) 

3

2.5 2
− = db

az el
θσ

SNR
 (6) 

where SNR is given by: 

( )

2

43
max(4 )

= T T RnP G G σλSNR
π kTBF R L

 (7) 

The radar cross section (RCS) σ is always fluctuating for non-stationary targets (Barton 
and Leonov, 1998). A physical optics approximation-based MATLAB tool known as 
POFACETS (Jenn, 2005) can be served as a convenient tool for RCS prediction. At the 
same time, the noises in the IR systems are categorised as distortions or statistical 
fluctuations in the electrical current such as Johnson noise, shot noise,  
generation-recombination noise and photon noises. Using the blackbody radiance theory 
and detector theory (Keefer, 1989) the total noise current is given by: 

or ( ) ( ) ( ) ( )noise Photovoltaicσ n R jn r sn r pn r= + +  (8) 
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4 State variable theory and data fusion methods 

A popular finite-dimension or a state variable approach to represent state vector of a 
dynamic system is adopted in this paper. A generic representation (Jenn, 2015) for a 
given kinematic model is given by: 

1 1ˆ ˆ( ) ( )k k kX FX Gw− −− = + +  (9) 

1ˆ ( )k k kZ HX v−= + +  (10) 

Three different filters namely fixed-gain (Shimkin, 2009), Kalman (Grewal and Andrews, 
2001) and particle filters (PFs) (LaViola, 2006; Wan and Van Der Merwe, 2000; Naidu, 
2009) are studied and implemented for each target trajectory considered. Among the 
various multi sensor data fusion methods Kalman filter-based data fusion has been widely 
used (Wan and Van Der Merwe, 2000). In this section, instead of Kalman filter,  
EKF-based measurement fusion (MF) and state vector fusion (SVF) fusion algorithm is 
presented. The first step is to synchronise the data from both the sensors once at sampling 
period T of the tracking system. A centralised fusion tracking architecture is considered 
as shown in Figure 2. 

Figure 2 Centralised fusion system block diagram 

 

5 Simulation analysis 

For the purpose of the analysis it is assumed both RADAR and FLIR are installed at the 
same location with the origin as their centre and the operating range is assumed to be  
25 Km. The three degree of freedom in translation motion for different target motions are 
simulated in MATLAB with the assumed initial conditions. Each of the filter estimation 
process is done by 50 Monte Carlo simulations which is a relativistic way of obtaining 
possible outcomes. The performance of each estimator is ensured by computing the error 
analysis in positioning, range and angle accuracies using RMS errors. The principal 
function of these trackers is for better signal reconstruction by reducing measurement 
noise with less residual either in position or in angle. Now, the performance of each filter 
estimates is shown from Figures 3 to 6. It is found that the efficiency of fixed gain filter 
is highly reliable upon the filter gain coefficients which are solely depend upon the 
smoothing coefficient that varies from zero to one. A value of 1 is chosen for heavy 
smoothing and low value for less smoothing. Whereas, the Kalman filter have better 
estimates than fixed gain filter because the Kalman gains are computed dynamically. In 
other words, the Kalman gain matrix determined from the state error variance as well as 
from measurement and noise variances adjusts adaptively. The Kalman filter computes its 
own state error uncertainty estimates while observing a new measurement. Also, as it is 
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mentioned (Li et al., 2016), if the new measurement noise error variance is bigger than 
the state error variance, the Kalman filter will place less emphasis on the new 
measurement than if the state error were larger than the measurement error. On the other 
hand, the simple fixed gain filter computes the filter gains based on assigned smoothing 
coefficient. This effect and the superiority of Kalman filter over fixed gain estimator can 
be seen in position errors. Since the first target motion does not involve any nonlinearities 
fixed gain and Kalman filters serves as best linear estimators for reducing mean squared 
errors (MSEs). However, as all systems are ultimately nonlinear the high degree of 
nonlinearity associated with process and measurement equations makes a difficult state 
estimation problem for linear estimators like Kalman. On the other hand, this recursive 
Bayesian estimator known as PF provide better estimation accuracy for a non-Gaussian 
distribution. Here, the PF algorithm is based on estimating the probability distribution 
function (PDF) for the state variables given measurement variables and the generation of 
the particles is a trade-off. The key feature with PF over linear filtering is resampling 
which is to generate posteriori particles based on relative likelihood. 

Figure 3 Sensor and filter estimates for projectile motion (see online version for colours) 

 

Figure 3 presents the important target features such as range, azimuth and elevation 
values by the sensor and the filter estimates. The comparison of RMS errors in target 
features is shown in Table 1. Among the entire filter estimates the MF and the SVF 
closely follows the true estimate giving the less RMS errors. Also, in Figure 4, the RMS 
error of a three dimensional target position is presented. The sensor or the measured 
value has the highest RMS error due to the inherent noises associated with radar. 
Although, fixed gain and the Kalman filter estimates produces less residual, the fusion 
algorithm produces much better result in reducing the RMS errors far better than 
individual filter estimates that proves the significance of fusion estimators. 
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Figure 4 RMS errors for projectile motion (see online version for colours) 

 

The MF and SVF methods are functionally equivalent with identical measurement 
matrices. Usually, SVF has less computational cost and is more efficient than MF. 
However, MF out performs SVF when the measurement matrices of the sensors are 
different. Also, it can be seen MF is more flexible especially when the measurement 
matrices and noise characteristics are time-varying. The RMS and RSSP errors in range 
and angles are shown in Table 2. 

Figure 5 Sensor and filter estimates for nonlinear motion (see online version for colours) 
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Figure 6 RMS errors for nonlinear motion (see online version for colours) 

 

Table 1 Comparison of RMS and RSSP errors 

Target motion Estimator 
RMS errors 

r(m) ψ(rad) φ(rad) 
Projectile RADAR 117.3 0.0021 0.0099 

IRST -- 0.0136 0.0643 
Fixed gain 45.51 0.0082 0.0053 

Kalman 16.32 0.0005 0.0002 
MF 11.11 0.0024 0.0012 
SVF 11.11 -- -- 

Nonlinear RADAR 29.98 0.0027 0.0058 
IRST -- 0.0337 0.0735 

Fixed gain 24.57 0.005 0.0040 
Kalman 17.65 0.0006 0.0003 
Particle 1.67 0.00008 0.00005 

MF 13.53 0.0029 0.0063 
SVF 13.78 -- -- 

Figures 5 and 6 are the special case simulated for a nonlinear case given by the equation: 

1
1 2

1

250.5 8cos(1.2( 1))
1

k
k k

k

xx x k
x

−
−

−
= + + −

+
 (11) 

where the target is aggressively manoeuvring in a nonlinear fashion. Here, k is the 
discrete integer time index. For this special case, though the individual filter estimates 
and the fused estimators has performed better, PF has over ruled in providing better filter 
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estimate and far less residual. In Figure 5, the PF is the closest filter estimate to the true 
value that proves its nature. 

6 Image fusion analysis 

Multi-imaging sensor fusion plays an important role for better enhancement of image for 
which the fused image will contain better contrast. As situational awareness has attained 
a greater importance, the image fusion process makes it easy for user to detect, recognise 
and identify the target. The wide variety of applications where image fusion applied is in 
medical imaging, microscopic imaging, remote sensing, computer vision and robotics. 
Based on the application, one of the main attributes while doing image fusion is to 
preserve the relevant data contained in the source images. It is absolutely necessary to 
remove the irrelevant features and noise to its maximum extent in the source image. 
Usually, the fusion process is carried out at pixel level by combining the source images 
without any pre-processing. Averaging of pixels of grey level images is one of the 
simplest kinds of multi-sensor image fusion. However, this simple fusion process results 
in undesirable effects and reduce the feature contrast. In some cases, various objects at 
different distances may not be captured by the imaging sensors in such a way that the 
object will be in focus than with the other sensor. In these scenarios, the conventional 
fusion process will fail. 

Among the different fusion architectures, the source images are collected and 
combined as a whole for fusion. On the other hand, the source images are decomposed 
into small blocks to be used in fusion process. In the later case, the inconsistency is 
reduced as the local variations in the pixels are considered while fusing the images. The 
optimal size of the block and the threshold are set by the user while considering the 
spatial frequencies. An alternate method is a principal component analysis (PCA) method 
in which the source or the test images must be registered prior to the fusion process. 

6.1 PCA method 

The name of this method is principle component method that which transforms the 
number of correlated variables into a number of uncorrelated variables called principal 
components. The first principle component or the first uncorrelated variable will account 
for the highest variance in the data, and likewise each succeeding uncorrelated variable 
accounts for much of the remaining variance. The first principle component lies in the 
direction of maximum variance; the second principle component is constrained to lie in 
the subspace orthogonal to the first component for which this component within the 
subspace points to the direction of maximum variance. The third uncorrelated variable 
will lie in the direction of maximum variance of subspace orthogonal to the first two and 
it will continue likewise (Raol, 2009). Principal component basis vectors depend on the 
dataset. For instance, if X be a d-dimensional random vector with zero mean, and 
orthogonal projection matrix V be such that Y = VTX. The covariance of Y, cov(Y) is a 
diagonal matrix. By applying simple matrix algebra: 
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 (12) 

Multiplying equation with V on both sides: 

cov( ) cov( )
cov( )

TV Y VV X Y
X V

=
=

 (13) 

The matrix V can be written as V = [V1, V2, …, Vd] and cov(Y) in the diagonal form as: 

1

1

0 0
0 0
0 0

d

d

λ
λ

λ
−

 
 
 
  

 (14) 

Using the above equation in: 

[ ] [ ]1 1 2 2 1 2, , ..., cov( ) , cov( ) , ..., cov( )d d dλV λ V λ V X V X V X V=  

The above equation could be written as: 

cov( )i i iλV X V=  (15) 

where i = 1, 2, …, d and Vi is an eigenvector of cov(X). 

Here: 

1 1 2

2 1 2

1 2 otherwise
2

k k k

fk k k k

k k

I NPC NPC th
I I NPC NPC th

I I

> +
=  < −


+


 (16) 

where th is the user defined threshold, and (I1k + I2k) / 2 is the average of corresponding 
gray level pixels. 

6.2 Experimental analysis 

To understand the advantages of PCA-based fusion method, the following images are 
considered for simulation. Two different types of noises are added to the images. One is 
Gaussian and the other is salt and pepper noise to see the performance of the PCA image 
fusion method. 
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The image error measurements (Silva et al., xxxx; Gupta and Porwal, 2016; Wang 
and Bovik, 2002; Neto et al., 2013) are made based on the following definitions and 
equations: 

1 MSE 

The MSE between two images is given by: 

[ ]2

1 1

1 ˆ( , ) ( , )
m n

n m

MSE g n m g n m
M = =

= −  

where M is the width of the image, g(n, m) is the original image and ˆ( , )g n m  is the 
estimated image. The disadvantage with the MSE is that it depends strongly on the 
image scaling. It varies from an 8-bit image to 10-bit image. 

2 Root mean square error (RMSE) 

The RMSE of an image is an absolute measure of it that measures the average 
magnitude of the error and is given by: 

[ ]2

1 1

1 ˆ( , ) ( , )
m n

n m

RMSE g n m g n m
M = =

= −  

3 Peak signal to noise ratio (PSNR) 

PSNR is a good measure for any restored image and avoids the problem of image 
scaling. For any image, PSNR is given by: 

10 2
10 log MSEPSNR

S
= −  

where S is the maximum pixel value and PSNR is measured in dB. Although PSNR 
is common in use, it is not an ideal because the signal strength is estimated as S2 
rather than the signal strength of the actual image. 

4 Mean absolute error (MAE) 

MAE that calculates the average magnitude of the error is given by: 

1 1

1 ˆ( , ) ( , )
m n

n m

MAE g n m g n m
MN = =

= −  

5 Signal to noise ratio (SNR) 

The SNR of an image determines the physical measure of the sensitivity of a digital 
imaging system. The industry standard of the SNR is given by: 

1020log signalSNR dB
RMS noise

=  

where the signal is the net difference between maximum and the minimum value of 
the image signal. 

6 Image quality index (IQI) 
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Another significant new development for the objective measure of an image is the 
IQI. The IQI definition is given by: 

( ) ( )22 2 2

22xy x y

x y x y

σ σ σxyQ
σ σ σ σx y

= ⋅ ⋅
+

 

where the first term is known as linear correction, second term is luminance and the 
third term is known as contrast. 

7 Enhancement measurement error (EME) 

This is a measure of entropy derived to obtain optimal parameters for image 
enhancement. It is defined as: 

max; ,

min; ,1 1

1 20ln
r c

k l
rc

k ll k

IEME
r c I= =

 =  ×  
  

where r × c defines the blocks in which an image is split with being the size of the 
image. 

8 Pearson correlation coefficient (PCC) 

This is one of the widely used statistical techniques for pattern recognition and image 
processing where it computes the comparison of two images for image registration 
purpose, and disparity measurement. It is defined as: 

( )( )

( ) ( )2 2

i m i mi

i m i mi i

x x y y
PCC

x x y y

− −
=

− −


 

 

where xi is the intensity of the ith pixel in image 1, yi is the intensity of the ith pixel in 
image 2, xm is the mean intensity of image 1, and ym is the mean intensity of image 2. 
Table 2 presents the image error measurements for the images considered above. 

Figure 7 Principle component analysis-based image fusion block diagram 

 

Source: Raol (2009) 
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Figure 8 Original image and the noisy images 

 

Figure 9 Error images 

 

Table 2 Image measurement errors 

Image error 
measurement 

Image error measurements 
Sensor 1 image Sensor 2 image Fusion process 

RMSE 0.0096 0.0061 0.0040 
PSNR 68.36 dB 70.30 dB 72.19 dB 
MAE 0.07 0.01 0.04 
SNR 13.5 dB 13.6 dB 14 dB 
IQI 0.05 0.33 0.07 
EME 25.89 16.72 14.35 
PCC 3.9 * 106 4.09 * 106 4.2 * 106 
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7 Conclusions 

The mathematical modelling and formulation of target and sensor dynamics is utilised in 
this paper. A state variable approach is implemented for target, sensor and the filter 
tracking algorithms. By simulating different target motions, the performance evaluation 
of each filter is observed and the superiority of the multi sensor data fusion is also 
presented. A widely known image fusion technique known as principle component 
analysis (PCA) is also utilised to observe its robustness over single sensor performance. 
The RMS error measurement both in position as well as in image measurement error 
shows the necessity of multi sensor data fusion for better enhancement and improvement. 
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