The gradient and the Newton iterative modelling methods for an operational amplifier circuit
by Ling Xu
International Journal of Modelling, Identification and Control (IJMIC), Vol. 32, No. 3/4, 2019

Abstract: In order to provide a new method to identify the mathematical model of circuit systems, this paper studies modelling methods by combining the iterative strategy with the nonlinear optimisation. When we analyse a complicated circuit, we only need to find the relationship between the input and the output and do not need to concern the specific components, which can be solved by system identification. With this purpose, this paper develops the iterative modelling methods to construct the transfer function for an amplifier circuit system which can be described by the transfer function model of a first-order inertial system. For obtaining the transfer function model, the impulse response observed data are employed to design the objective function regarding to the time constant and the gain of the first-order inertial system. In light of the nonlinear characteristic of the system output, the gradient optimisation and the Newton optimisation are adopted to minimise the objective function. Finally, the simulation experiment is carried out to test the performance of the developed modelling methods.

Online publication date: Mon, 18-Nov-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com