Identifying drug-like inhibitors of Mycobacterium tuberculosis H37Rv Seryl tRNA synthetase based on bioassay dataset: homology modelling, docking and molecular dynamics simulation
by V.K. Adarsh; A. Santhiagu
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 12, No. 4, 2019

Abstract: Resistance to existing drugs of tuberculosis bacteria demands an immediate requirement to develop effective new chemical entities acting on emerging targets. Seryl-tRNA synthetase (SerRS) is essential for the viability of Mycobacterium tuberculosis (MTB). In this study, we have attempted to develop the tertiary structure of SerRS through homology modelling and to elucidate the active site interactions of inhibitor compounds aided by docking. Homology modelling using PDB ID: '2DQ3: A' chain as template and validation of the model was carried out with Modeller V9.13 and SAVES online server respectively. About 1248 compounds from a putative kinase compound library of PubChem database found active in whole cell bioassay (AID2842) on MTB - H37Rv was used in docking studies using 'AutoDock'. Out of the tested molecules, nine showed docking scores ≤-10 kcal/mol with good drug-like properties were further subjected to molecular dynamics (MD) simulations and found three of the compounds have stable interactions.

Online publication date: Wed, 13-Nov-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com