Data-driven calibration for infrared camera in additive manufacturing
by Jack Francis; Mojtaba Khanzadeh; Haley Doude; Vincent Hammond; Linkan Bian
International Journal of Rapid Manufacturing (IJRAPIDM), Vol. 8, No. 4, 2019

Abstract: Non-contact infrared (IR) measurement devices are currently used to monitor the thermo-physical processes during additive manufacturing (AM). A common IR device for thermal monitoring, the IR camera, requires a blackbody calibration in order to be used effectively, as the camera measures the radiant energy (irradiance) instead of the true temperature. This calibration is difficult, expensive, and requires specialised equipment. Therefore, this article details a data-driven calibration for IR cameras by comparing the lengths of cutoff regions captured by the pyrometer and IR camera. After scaling and interpolating pyrometer images, a similarity metric is developed that characterises the relationship between irradiance and temperature. An application of the IR camera for monitoring thermo-physical processes is discussed in detail.

Online publication date: Mon, 30-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Rapid Manufacturing (IJRAPIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com