Analysis of influence of ultra-hydrophilicity of oxidation titanium surface on blood compatibility based on density functional theory
by Qiongjian Huang
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 14, No. 5, 2019

Abstract: Based on the density functional theory, it adopts the first-principles method to calculate the ultra-hydrophilicity of oxidation titanium surface under different oxygen vacancy concentrations. The calculation results show that under the practically feasible oxygen vacancy concentration range, with the increase of the oxygen vacancy concentration, the ultra-hydrophilicity of oxidation titanium surface is increased, and the semiconductor type of the oxidation titanium is transformed from p type to n type. When the oxidation titanium surface is in contact with blood, the n-type semiconductor and the features of the electron state occupying the bottom of conduction band of the oxidation titanium surface can suppress the transfer of charge from the fibrinogen in the blood to the oxidation titanium surface so to suppress the aggregation and activation of blood platelet, thus improve the ultra-hydrophilicity of oxidation titanium surface on blood compatibility.

Online publication date: Wed, 11-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com