Nonlinear channel tracking of a high mobility wireless communication system
by P. Sudheesh; M. Jayakumar
International Journal of Advanced Intelligence Paradigms (IJAIP), Vol. 13, No. 3/4, 2019

Abstract: Recently evolved wireless communication systems incorporate the use of multiple input multiple output (MIMO) systems to overcome the effects of channel fading. Orthogonal frequency division multiplexing (OFDM) is moreover used to overcome inter-symbol interference (ISI) to ensure effective signal transmission. The channel parameters in wireless communication systems are generally nonlinear. Channel estimation techniques for nonlinear systems include unscented Kalman filter (UKF), Kalman filter (KF) and extended Kalman filter (EKF). The Kalman filter is used for linear channel estimation whereas the EKF and UKF are applicable for nonlinear systems as well. Particle filter is a type of sequential Monte Carlo (SMC) method which uses sequential importance sampling (SIS) technique to effectively track a nonlinear system. Particle filter (PF) is an efficient method of tracking, which is able to deal with non-Gaussian and nonlinear systems. In this paper, we estimate the channel parameters of a fast time varying MIMO-OFDM system using particle filter. The proposed scheme considers a first order auto-regressive (AR) system model. A Rayleigh fading channel for mobile systems which incorporates the Doppler shift that occurs in a mobile environment is used. The performance of the particle filter is compared with the other estimation methods like Kalman filter and extended Kalman filter. The mean square error (MSE) as a function of the signal to noise ratio (SNR) is plotted to compare the performance of the particle filter with other systems.

Online publication date: Tue, 03-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Intelligence Paradigms (IJAIP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com