Study of crystal-amorphous phase transition and morphologies of metal nanoparticle Fe under annealing
by Pham Huu Kien
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 14, No. 4, 2019

Abstract: The present work investigates the crystal-amorphous phase transition and morphologies of metal nanoparticles Fe (NPs) using means of molecular dynamics (MD) simulation. Tracing the number of crystal atoms and the analysis of radial distribution functions, we found that the amorphous Fe NP is transformed into bcc crystal one when it was annealed for long times at 900 K. At the early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which creates the stable clusters in the core of NP and to spread into the surface of NP. Based on the mean potential energy per atom analysis and MD data visualisation technique, the effect of B atoms that prevent the growth of crystallisation as well as the different morphologies of Fe and FeB NPs have been investigated in detail.

Online publication date: Tue, 27-Aug-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com