Determination of temperature-dependent Young's modulus of bulk metallic glass
by Suresh Kaluvan; Haifeng Zhang; Sanghita Mridha; Sundeep Mukherjee
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 14, No. 4, 2019

Abstract: Bulk metallic glasses (BMGs) are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of BMGs include high strength and hardness as well as excellent corrosion and wear resistance. The research goal of this paper is to determine the mechanical properties at elevated temperatures. To accomplish this goal, we have used two methods in this paper to determine the Young's modulus of a BMGs, Zr41.2Ti13.8Cu12.5Ni10Be22.5 at elevated temperatures: sonic resonance method and nanoindentation. In the sonic resonance method, the system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The Young'ss modulus was found to reduce from 100 GPa (350°C) to 94 GPa (50°C). In the nanoindentation method, modulus was determined from the unloading curve and found to be in the same range as measurements from sonic resonance technique.

Online publication date: Tue, 27-Aug-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com