Dynamic reconfiguration of Distributed Arithmetic designs
by Klaus Danne, Christophe Bobda
International Journal of Embedded Systems (IJES), Vol. 2, No. 1/2, 2006

Abstract: We present a design space exploration for applications using runtime reconfigurable FPGAs. The studied example is a mechatronic control system which changes between different controller tasks at runtime. For each task we implement six alternative distributed arithmetic designs with area/computation time trade-offs. Values are estimated and later on compared to synthesis results. For exchanging controllers at runtime we propose three different mappings to the FPGA. Given the application characteristics and the reconfiguration speed of the target FPGA, our analysis derives the optimal selection of the alternative task implementations and the corresponding mapping.

Online publication date: Wed, 05-Jul-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com