Effects of magnetohydrodynamics on temperature and shock standoff distance in a supersonic flow over a blunt body
by Sanjiv Paudel; Saleen Bhattarai; Sudip Bhattrai; Bikalpa Bomjan
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 19, No. 4, 2019

Abstract: Magnetohydrodynamics has been one of the promising ways of increasing efficiency of supersonic as well as hypersonic propulsion systems, mostly by applying magnetic fields over shockwaves. This paper presents the effects of magnetic fields with different strengths both along and transverse to an electrically conducting flow at Mach 2.94 over a blunt body using a density-based solver implemented with MHD equations in OpenFOAM. The solver utilises Riemann method with an AUSM+ flux splitting technique along with limited linear interpolation. The effects of imposed magnetic field on temperature and shock standoff distance are observed. Movement of the shockwave due to the application of magnetic field on the geometry, along with a consequent change in shock standoff distance is presented in the paper. The influence of a magnetic field's direction on the Mach number of the flow is also shown. Likewise, the stagnation temperature of the blunt body is demonstrated to be independent to the direction of applied magnetic field.

Online publication date: Fri, 19-Jul-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com