An efficient VLSI architecture for two-dimensional discrete wavelet transform
by Rohan Pinto; Kumara Shama
International Journal of High Performance Systems Architecture (IJHPSA), Vol. 8, No. 3, 2018

Abstract: In this paper, a memory efficient 2-D discrete wavelet transform (DWT) structure is presented for high-speed application. The architecture is based on the modified lifting scheme to reduce the critical path to one multiplier delay. In order to increase the speed of processing, four pipeline stages are introduced in the structure. The computation time for an N × N image is N2/4, as the throughput rate of the structure is four. The results after comparison reveal that the proposed architecture has a temporal memory lower than the other DWT architectures. The Z-scan method is employed to fetch the input data which suits the transpose unit design. Five registers and a multiplexer constitute a transpose unit, which is required to transpose the data between the row and the column processor. The proposed 2-D dual-scan DWT architecture has the merits of low latency, low control complexity and regular signal flow, making it suitable for a very large-scale integration (VLSI) implementation. The architecture is modelled in VHDL and synthesised with the CMOS 180 nm technology.

Online publication date: Tue, 16-Jul-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Systems Architecture (IJHPSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com