Joint topology control and routing design for reconfigurable ring-tree networks
by Chih-Min Yu; Chun-Chyuan Chen
International Journal of Sensor Networks (IJSNET), Vol. 30, No. 3, 2019

Abstract: This paper presents a joint topology control and routing design of reconfigurable ring-tree (RRT) topology for Bluetooth non-uniform networks. The non-uniform network consists of one dense and many other sparse regions. In the dense area, the RRT builds a ringshaped topology as a backbone subnet in a distributive manner, which is expanded by a treeshaped topology to other more sparse areas. For various sizes of networks, the size of the ring subnet is controlled by the trade-off between the network performance and the construction cost. Because corresponding nodes in the ring subnet do not procure the global computation situations, obtaining the optimal ring size is an NP-complete problem. In seeking to finalise the optimum ring size, an empirical max-search strategy is provided to attain the preferred cost-performance ratio. The max-search strategy is a methodical decision policy, carried out by three working elements: the topology construction, the packet routing and the maximum decision elements. The topology construction element engenders the ring-tree topology, the packet routing element processes the routing performance with a uniform traffic model, and the maximum decision element utilises a decision-making criterion to discover the optimum ring size. Experimental values demonstrate that the optimum ring size can be resolved by the max-search scheme for various sizes of networks, and the RRT delivers a better throughput performance than that of the conventional BlueHRT and Bluetree networks.

Online publication date: Tue, 18-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com