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1 Introduction

Due to the capability of handing constraints explicitly, Model Predictive Control (MPC), also
known as Receding Horizon Control (RHC), has become a popular technique for industrial
process control and attracts much attention, especially robust MPC, such as Kothare et al.
(1996) and Li et al. (2009). In some practical applications, the system parameters of LPV
systems are often online measurable or vary with known bounded rates. For LPV systems
with bounded rates of parameter variations, if the available information on the system
parameters can be taken into account during controller design, the control performance is
expected to be improved. Considering the measurable parametersss of LPV systems, Lu and
Arkun (2000) proposed a quasi-min-max MPC algorithm. For LPV systems with bounded
rates of parameter variations and the parameters restricted into the unit simplex, Casavola
et al. (2002) developed a feedback Min-Max MPC algorithm. But there is a major problem
in its initialisation stage, which is pointed out by Ding and Huang (2007).

For LPV systems with independently varying parameters, Park and Jeong (2004)
transformed the system into a system with ‘parameter-incremental’ uncertainties.
Then, by applying the open-loop dual-mode control, i.e., some free control moves followed
by a feedback control law, an RMPC algorithm is proposed. But due to the uncertainty
of systems, the recursive feasibility of the controller proposed in Park and Jeong (2004)
cannot be guaranteed, which directly results in that the closed-loop stability would not be
guaranteed.

In practical applications, the parameter measurement error is another issue which
must be considered. Therefore, this paper considers the RMPC of LPV systems with
both independently varying parameters and parameter measurement errors. In terms of the
measurement errors, the error bounds are used to calculate the possible areas where the
parameters could belong to in the future, and these areas can be tackled with the parameter
variations together. Then the dynamic system model is converted into a sequence of future
models with parameter-incremental uncertainty by referring to Park and Jeong (2004),
which includes not only the time-varying parameter variations but also the measurement
errors. Corresponding to the model sequence, the proposed RMPC adopts a sequence of
feedback control laws, instead of open-loop control strategy. The recursive feasibility and
closed-loop stability can be guaranteed. Meanwhile, since the feedback control laws are
designed according to the future parameter variations, the information on the parameter
variations and measurement errors can be utilised in the MPC controller and then better
control performance can be expected.

This paper is organised as follows: Section 2 introduces the problem and the issue
about the recursive feasibility of RMPC. The feedback RMPC will be introduced with a
modified model sequence with parameter-incremental uncertainties in detail in Section 3.
Numerical example is given in Section 4 to verify the results proposed in this paper.
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Notation: Denote u(k + i|k) and x(k + i|k) as the control input and system state of time
k + i, predicted at time k. ||x||2Q = xTQx, x(k|k) = x(k). The symbol ∗ induces a
symmetric structure, e.g., when L and R are symmetric matrices,[

L ∗
N R

]
=

[
L NT

N R

]
.

2 Background

Consider the discrete-time LPV system

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k) (1)

where x(k) ∈ Rn, u(k) ∈ Rnu and θ(k) = {θ1(k), θ2(k), . . . , θL(k)} are the system
state, control input and parameter vector, respectively. The parameter vector θ(k) is assumed
measurable with measurement error σ at time k. The measured values of θi(k) is denoted
as θ̂i(k). Moreover, the real values, measured values and the changes of parameters satisfy
the following constraints

θj ∈ Σj =

[
θ
−
j
, θ̄j

]
, (2)

∆θj(k) = θj(k + 1)− θj(k) ∈ δj =

[
δ
−
j
, δ̄j

]
, (3)

|θ̂j(k)− θj(k)| ≤ σj . (4)

System (1) is subjected to the input constraints:

|uj(k)| ≤ uj,max, j = 1, . . . ,m. (5)

At each time, the RMPC will calculate the control moves u(k + i|k) by optimising the
following optimisation problem

min
U(k)

max
θj∈Σj ,∆θj∈δj ,j=1,...,L

J∞(k) s.t.(1)− (5) (6)

whereJ∞(k) =
∞∑
i=0

[
‖x(k + i|k)‖2Q1

+ ‖u(k + i|k)‖2R
]
,Q1 ≥ 0 andR ≥ 0 are weighting

matrices.

Remark 1: For LPV systems (1)–(5), although the approach in Kothare et al. (1996)
can be directly used to design RMPC, the information on system parameters (2)–(3) is
ignored, which may lead to poor performance. In order to improve the control performance,
for LPV systems (1)–(5) without parameter measurement errors, Park and Jeong (2004)
makes use of the information on parameters to design RMPC by tackling the uncertainty
of LPV systems as parameter-incremental uncertainty. However, the open-loop strategy
U(k) = {u(k|k), u(k + 1|k), . . . , u(k +N |k)} is adopted by Park and Jeong (2004) which
is similar to Wan and Kothare (2003). As pointed out by Pluymers et al. (2005), the proof
about recursive feasibility of RMPC in Wan and Kothare (2003) is not correct due to the
uncertainty of system. The same situation happens in Park and Jeong (2004) when N > 2.
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For systems (1)–(3), Park and Jeong (2004) suggested the following method to form a
system with parameter-incremental uncertainties to make use of the property of parameters.
Since the parameter θj(k) can be measured at sample time and the bound rates of parameters
variations are also available, the range of θj(k + i|k) can be computed and described as:

θj(k + i|k) ∈ [max(θj(k) + i× δ
−
j
, θ
−
j
), min(θ̄j , θj(k) + i× δ̄j)].

And then the following is defined in Park and Jeong (2004).

µj(k + i|k) ,
1

2

[
min(θ̄j , θj(k) + i× δ̄j) + max(θj(k) + i× δ

−
j
, θ
−
j
)

]
,

ρj(k + i|k) ,
1

2

[
min(θ̄j , θj(k) + i× δ̄j)−max(θj(k) + i× δ

−
j
, θ
−
j
)

]
.

Park and Jeong (2004) modifies parameter uncertainties into parameter-incremental
uncertainties as below,

A(θ(k + i|k)) = A(µ(k + i|k)) +Bp(k + i|k)∆Cq(k + i|k),

B(θ(k + i|k)) = B(µ(k + i|k)) +Bp(k + i|k)∆Dqu(k + i|k),

∆ = diag (η1I, η2I, . . . , ηLI)

where ηi is a time-varying uncertain variable such that ‖ηi‖ ≤ 1, i = 1, 2, . . . , p.
Thus, systems (1)–(3) can be transformed into the following structured uncertain system
predicted at time k:

x(k + i+ 1|k) = A(µ(k + i|k))x(k + i|k) +B(µ(k + i|k))u(k + i|k)

+Bp(k + i|k)p(k + i|k),

q(k + i|k) = Cq(k + i|k)x(k + i|k) +Dqu(k + i|k)u(k + i|k),

p(k + i|k) = ∆q(k + i|k).

Since the recursive feasibility is the precondition of the closed-loop stability for systems
with MPC, how to make good use of the information on system parameters (1)–(5) and
to guarantee the recursive feasibility of RMPC become key issues to be studied. In the
following, we will propose a feedback RMPC to achieve both of them for systems (1)–(5).

3 Feedback RMPC for system with parameter-incremental uncertainty

3.1 The modified model sequence with parameter-incremental uncertainties

For the parameters of systems (1)–(5), the measured values of parameters can be utilised at
each time. With consideration of measurement errors (4), the following can be obtained.

θj(k) ∈
[
θ̂j(k)− σj , θ̂j(k) + σj

]
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and for θ̂j(k + 1), it must satisfied with

θ̂j(k + 1) ∈
[
θj(k) + δ

−
j
− σj , θj(k) + δ̄j + σj

]
.

Hence, for θj(k + 1) we can get

θj(k + 1) ∈
[
θ̂j(k + 1)− σj , θ̂j(k + 1) + σj

]
=

[
θ̂j(k)− σj + δ̂

−
j
, θ̂j(k) + σj + ˆ̄δj

]
where δ̂

−
j

= δ
−
j
− 2σj and ˆ̄δj = δ̄j + 2σj . If θ̂j(k) > θ̄j (or θ̂j(k) < θ

−
j
), θ̂j(k) is forced as

θ̄j
(
or θ
−
j

)
due to (2).

In the same way, we can get that

θj(k + i) ∈
[
θ̂j(k + i)− σj , θ̂j(k + i) + σj

]
=

[
θ̂j(k)− σj + i× δ̂

−
j
, θ̂j(k) + σj + i× ˆ̄δj

]
(7)

By referring to Park and Jeong (2004), we can revise the model with parameter-incremental
uncertainties to include the measurement errors for systems (1)–(4). From the measured
parameter θ̂j(k), the following is defined for i ≥ 0.

µ̃j(k + i|k) ,
1

2

[
min(θ̄j , θ̂j(k) + σj + i× ˆ̄δj) + max(θ̂j(k)− σj + i× δ̂

−
j
, θ
−
j
)

]
,

ρ̃j(k + i|k) ,
1

2

[
min(θ̄j , θ̂j(k) + σj + i× ˆ̄δj)−max(θ̂j(k)− σj + i× δ̂

−
j
, θ
−
j
)

]
.

Then similar to Park and Jeong (2004), systems (1)–(4) can be transformed into the following
structured uncertain system predicted at time k:

x(k + i+ 1|k) = A(µ̃(k + i|k))x(k + i|k) +B(µ̃(k + i|k))u(k + i|k)

+Bp(k + i|k)p(k + i|k), (8)
q(k + i|k) = Cq(k + i|k)x(k + i|k) +Dqu(k + i|k)u(k + i|k), (9)
p(k + i|k) = ∆q(k + i|k). (10)

It is worth to be pointed out that there are also uncertainties for the current system model
due to measurement errors. Meanwhile, if there is no measurement error, the above model
will be reduced to that in Park and Jeong (2004).

In addition, the original LPV system (1)–(2) can be converted into a structured feedback
uncertain system as follows.

x(k + 1) = Ã(α)x(k) + B̃(α)u(k) + B̃pp(k), (11)

q(k) = C̃qx(k) + D̃quu(k), (12)

p(k) = ∆̃q(k), (13)
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where α , 1
2 (θ̄j + θ

−
j
), β , 1

2 (θ̄j − θ−
j
) and A(θ(k + i)) ⊆ Ã(α) + B̃p∆̃C̃q ,

B(θ(k + i)) ⊆ B̃(α) + B̃p∆̃D̃qu , ∆̃ = diag (η1I, η2I, . . . , ηLI).
To simplify the presentation, systems (8)–(10) at time k is denoted as Σk,i and systems

(11)-(13) is denoted as Ψ in the following. Obviously, it can be concluded that Σk,i ⊆ Σk,i+1

and Σk,i ⊆ Ψ.

3.2 The feedback robust MPC

From the analysis in the last section, the system model will vary along the sequence
{Σk,0,Σk,1,Σk,2, . . . ,Σk,N−1} and Σk,N−1 = Ψ, which is denoted as Σ(k). To avoid
the difficulty to guarantee the recursive feasibility and make use of the information on
system parameters, a closed-loop strategy should be adopted and the varying feedback
control law Fi at each time should correspond to Σk,i. Hence, the control strategy
π := {u(k), F1, F2, . . . , FN−1} is adopted, where Fi is the feedback control gain at the ith
step and after the N th step the feedback control gain is always FN−1.

For Σ(k) with i > 0, consider the following quadratic function:

V (i, k) = x(k + i|k)TP (i, k)x(k + i|k),

where P (i, k) = P (N − 1, k) when i > N − 1.
From time k + i to k + i+ 1 (i ≥ 1), the following robust stable condition is imposed

on V (i, k):

V (i+ 1, k)− V (i, k) ≤ −‖x(k + i|k)‖2Q1
− ‖u(k + i|k)‖2R,

which is equivalent to

||(A(µ̃(k + i|k)) +B(µ̃(k + i|k))Fi)x(k + i|k)

+Bpp(k + i|k)||2P (i+1,k) − ||x(k + i|k)||2P (i,k)

≤ −[||x(k + i|k)||2Q1
+ ||u(k + i|k)||2R]. (14)

By summing (14) from i = 1 to i =∞, it follows

∞∑
i=1

[
‖x(k + i|k)‖2Q1

+ ‖u(k + i|k)‖2R
]
≤ V (1, k). (15)

Suppose there exists a non-negative parameter γ such that V (1, k) ≤ γ. Then, we can get

J∞(k) ≤ ‖x(k)‖2Q1
+ ‖u(k)‖2R + γ. (16)

To guarantee (14) and V (1, k) ≤ γ, the following lemma is given.

Lemma 1: For the uncertain system Σ(k) without input constraints, the policy
π = {u(k), F1, F2, . . . , FN−1}, which guarantees (14) and V (1, k) ≤ γ, is given by
u(k) = uk and Fi = YiX

−1
i with P (i, k) = γX−1

i , if there exists γ > 0, Xi ∈ Rn×n,
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Xi > 0, Yi ∈ Rnu×n (i = 1, 2, . . . , N − 1) and positive-definite diagonal matrices Λj ∈
Rn×n, (j = 0, 1, 2, . . . , N − 1), satisfying the following conditions. 1 ∗ ∗

Ξ1(k) Λ0 ∗
Ξ2(k) 0 Ξ3(k)

 ≥ 0 (17)


Xi

R1/2Yi

Q
1/2
1 Xi

Ξ1(k + i)
Ξ2(k + i)

∗
γI
0
0
0

∗
∗
γI
0
0

∗
∗
∗
Λi
0

∗
∗
∗
∗

Ξ3(k + i)

 ≥ 0, (18)

where Ξ1(k) = Cq(k)x(k) +Dqu(k)uk, Ξ2(k) = A(µ̃(k))x(k) +B(µ̃(k))uk, Ξ3(k) =
X1 −Bp(k)Λ0B

T
p (k), Ξ1(k + i) = Cq(k + i|k)Xi +Dqu(k + i|k)Yi, Ξ2(k + i) =

A(µ̃(k + i|k))Xi +B(µ̃(k + i|k))Yi, Ξ3(k + i) = Xi+1 −Bp(k + i|k)ΛiB
T
p (k + i|k)

and XN = XN−1.

Proof: From (8)–(10) (or (11)–(13)), we can get

p(k + i|k)T p(k + i|k) ≤ x(k + i|k)T (Cq(k + i|k)

+Dqu(k + i|k))Fi)
T (Cq(k + i|k)

+Dqu(k + i|k))Fi)x(k + i|k)

Condition (14) holds if the following condition can be guaranteed.

χT


||Fi||2R +Q1 − P (i, k) + ||A(µ(k + i|k))
+B(µ(k + i|k))Fi||2P (i+1,k) ∗
BTp (k + i|k)P (i+ 1, k)(A(µ(k + i|k))×
+B(µ(k + i|k))Fi) B

χ ≤ 0,

where χ =

[
x(k + i|k)
p(k + i|k)

]
, B = ||Bp(k + i|k)||2P (i+1,k). Then, by S-procedure, the above

condition can be guaranteed if there exists Λ′i = diag
(
S(1,i), . . . , S(L,i)

)
, S(l,i) ≥ 0,

l = 1, 2, . . . , L such that[
A1 ∗
A2 B1

]
≤ 0,

where A1 = ||A(µ̃(k + i|k)) +B(µ̃(k + i|k))Fi||2P (i+1,k) − P (i, k) + ||Fi||2R +Q1 +

||Cq(k + i|k) +Dqu(k + i|k)Fi||2Λ′i , A2 = BTp (k + i|k)P (i+ 1, k)(A(µ̃(k + i|k)) +

B(µ̃(k + i|k))Fi), B1 = ||Bp(k + i|k)||2P (i+1,k) − Λ′i.
Let P (i, k) = γX−1

i , Yi = FiXi and Λi = γ(Λ′i)
−1. By using Schur complement,

it can be concluded that the above condition is equivalent to (18).
In addition, by Schur complement, (17) is equivalent to[

A1(0) ∗
A2(0) B1(0)

]
≤ 0
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where A1(0) = ||A(µ̃(k))x(k) +B(µ̃(k))uk||2X−1
1

− 1 + ||Cq(k)x(k) +Dqu(k))

uk||2Λ−1
0

,A2(0) = BTp (k)X−1
1 (A(µ̃(k))x(k) +B(µ̃(k))uk) and B1(0) = ||Bp(k)||2

X−1
1

−
Λ−1

0 .
Left- and right-multiplying the above inequality by [1 p(k)] and [1 p(k)]T ,

respectively, and then by (8)–(10) and using S-procedure, we can get

||A(µ̃(k))x(k) +B(µ̃(k))uk +Bp(k)p(k)||2
X−1

1
≤ 1.

That is, V (1, k) ≤ γ holds if (17) is satisfied according to P (1, k) = γX−1
1 . Therefore, the

lemma is proven. �

From V (1, k) ≤ γ and (14), it is obvious that V (i, k) ≤ γ. Then constraints (5) can be
satisfied if the following lemma holds, whose proof can be easily obtained by the similar
procedure in Kothare et al. (1996) or Li et al. (2009) and is omitted here.

Lemma 2: The input constraints (5) can be satisfied if there exists γ > 0, Xi ∈ Rn×n,
Xi > 0, Yi ∈ Rnu×n, Zi ∈ Rnu×nu (i = 1, 2, . . . , N − 1) and positive-definite diagonal
matrices Λj ∈ Rn×n, (j = 0, 1, 2, . . . , N − 1), satisfying conditions (17) and (18), and
also satisfying the following conditions:

|(uk)l| ≤ ul,max, l = 1, 2, . . . ,m (19)[
Zi ∗
Yi Xi

]
≥ 0, (Zi)ll ≤ u2

l,max i = 1, 2, . . . , N − 1, l = 1, 2, . . . ,m. (20)

Lemma 2 can be proven in a similar way to the proof of the constraints in Kothare et al.
(1996). Therefore, it is omitted here.

Based on Lemmas 1 and 2, the optimisation problem of feedback RMPC for Σ(k) can
be formulated as below.

Algorithm 1: Let x(k) = x(k|k) be the state of the uncertain system Σ(k) measured
at sampling time k, and the input constraints are described as in (5). Then the policy
π = {u(k), F1, F2, . . . , FN−1} that minimises the upper bound on the robust performance
objective function at sampling time k is given by

u(k) = uk, Fi = YiX
−1
i

where γ > 0, Xi ∈ Rn×n, Xi > 0, Yi ∈ Rnu×n, Zi ∈ Rnu×nu (i = 1, 2, . . . , N − 1) and
positive-definite diagonal matrices Λj ∈ Rn×n, (j = 0, 1, 2, . . . , N − 1), are obtained
from the solution (if it exists) of the following linear objective minimisation problem

min
γ0,γ,uk,Xi,Yi,Zi,Λj

γ + γ0 (21)

s.t. (17)− (20) (22) γ0 xT (k) uTk
x(k) Q−1

1 0
uk 0 R−1

 ≥ 0. (23)

The current control input is u(k) = uk.
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Remark 2: For RMPC based on Algorithm 1, if the control input u(k) in control strategy
π is removed and N is chosen as 1, the controller will be simplified to the design in
Kothare et al. (1996). The added freedom in Algorithm 1 makes it possible to utilise the
information on system parameters, which is helpful to improve the control performance.
To simplify the presentation, let Qi := (Xi, Yi, Zi,Λi).

In terms of the recursive feasibility and closed-loop stability of Algorithm 1, the
following theorem can be given.

Theorem 3: If there is a feasible solution of Algorithm 1 at time k with system state x(k),
there will also exist a feasible solution for Algorithm 1 at next time, and the closed-loop
system is asymptotically stable.

Proof: Since Algorithm 1 is feasible at time k, suppose Γ∗(k) = {γ∗0(k),
γ∗(k), u∗k,Λ

∗
0,Q∗1, . . . ,Q∗N−1} as the optimal solution for the current state x(k). That

implies that Γ∗(k) satisfies (17)–(20).
At time k + 1, for Algorithm 1, we construct a solution

Γ(k + 1) = {‖x(k + 1)‖2Q1
+
∥∥Y ∗1 (X∗1 )−1x(k + 1)

∥∥2

R
,

aγ∗(k), Y ∗1 (X∗1 )−1x(k + 1), aΛ∗1, aQ∗2, . . . aQ∗N−1, aQ∗N−1}

with definition a := V (1, k + 1)/γ∗(k) where V (1, k + 1) = xT (k + 2|k +
1)γ∗(X∗2 )−1x(k + 2|k + 1), x(k + 2|k + 1) = [A(θ(k + 1)) +B(θ(k + 1))Y ∗1 (X∗1 )−1]
x(k + 1). The above definition means thatV (1, k + 1) = aγ∗(k).

From the model with parameter incremental uncertainty, Σk+1,i ⊆ Σk,i+1 and
Σk,i ⊆ Ψ. We observe that conditions (18) and (20) are affine in the matrices
(γ,Q∗1,Q∗2, . . . ,Q∗N−1). Multiplying them by parameter a respectively, we can see that
Γ(k + 1) satisfies (20) and (18) when i = 1, 2, . . . , N − 1.

Let uk+1 = Y ∗1 (X∗1 )−1x(k + 1) and γ0(k + 1) = ‖x(k + 1)‖2Q1
+∥∥Y ∗1 (X∗1 )−1x(k + 1)

∥∥2

R
. It is obvious that (19) and (23) are satisfied by Γ(k + 1).

Furthermore, sinceQ∗1(k) satisfies (18) at time k, it implies that (17) holds at time k + 1 with
the constructed solution Γ(k + 1) due to the definition of a. That means, the constructed
solution is a feasible solution of Algorithm 1 at time k + 1. Hence, the recursive feasibility
of Algorithm 1 can be established.

In addition, from Lemma 1, it can be concluded that ‖x(k + 1)‖2Q1
+∥∥Y ∗1 (X∗1 )−1x(k + 1)

∥∥2

R
+ V (1, k + 1) ≤ V (1, k) ≤ γ∗(k), i.e., γ0(k + 1) + γ(k + 1) ≤

γ∗(k). Therefore, it can be obtained that γ∗0 (k + 1) + γ∗(k + 1) ≤ γ0(k + 1) + γ(k +
1) < γ∗0(k) + γ∗(k) when x(k) 6= 0. That is, the closed-loop system is asymptotically
stable. �

4 Numerical example

Consider the following system:

x(k + 1) = [θ(k)A1 + (1− θ(k))A2]x(k) + [θ(k)B1 + (1− θ(k))B2]u(k)
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where A1 =

[
1 0
−0.3 1.4

]
, A2 =

[
1 0
−0.1 1.1

]
, B1 =

[
0.2
0

]
, B2 =

[
1
0

]
, |u| ≤ 1, θ(k) ∈[

0 1
]
, |∆θ| ≤ δ, |θ̂(k)− θ(k)| ≤ σ and

θ(k + 1) =

0, θ(k) + δ sin(k − 1) ≤ 0
θ(k) + δ sin(k − 1)
1, θ(k) + δ sin(k − 1) ≥ 1

θ̂(k) =

0, θ(k) + σ ≤ 0
θ(k) + σ
1, θ(k) + σ ≥ 1

.

The initial state is chosen as x(0) = [1, 1]T and the weighting matrices are chosen as
Q1 = diag(1, 0.1),R = 0.001. First, let us verify the recursive feasibility of Park and Jeong
(2004). Investigate an extreme case for RHC in Park and Jeong (2004) withN = 3, i.e., the
case with θ(k) = 1, δ = 1 and no measurement errors. For x(k) = [1, 1]T and k = 1, RHC
in Park and Jeong (2004) optimises the control inputs u(k), u(k + 1), u(k + 2) to steer
x(k) to a terminal invariant set. The states x(k|k), x(k + 1|k), x(k + 2|k), x(k + 3|k) are
shown in Figure 1, which is a partial enlarged drawing. From Schuurmans and Rossiter
(2000), x(k + i), i > 1 is a state constructed by the linear combination from the states
x(k + i|k) corresponding to the model vertices {A1, B1}, {A2, B2}. Thus, if Lemma 2
in Park and Jeong (2004) is correct, there must be a u(k + 3|k + 1) with u(k + 1|k +
1) = u(k + 1|k), u(k + 2|k + 1) = u(k + 2|k) steering x(k + 1|k + 1) into the terminal
set computed at time k. In Figure 1, states x(k + 1|k + 1), x(k + 2|k + 1), x(k + 3|k + 1)
are marked by a cycle. By computing, it is found that this u(k + 3|k + 1) does not exist.
That is, the RHC in Park and Jeong (2004) cannot guarantee the recursive feasibility.
Figures 2 and 3 show the state responses from x(0) = [1, 1]T with θ(0) = 0.6,
δ = 0.15, σ = 0 and θ(0) = 0.6, δ = 0.15, σ = 0.01, respectively, where N = 3 for RHC
in Park and Jeong (2004) and Algorithm 1. The results by using the techniques in Lu and
Arkun (2000) and Kothare et al. (1996) are also included in Figures 2 and 3, respectively
to make a comparison. From Figure 2, the performance of RMPC with Algorithm 1 is best,
where the cost value of Algorithm 1 is 34.56, better than 42.69 of Lu and Arkun (2000) and
42.94 of Park and Jeong (2004). For the case with measurement errors σ = 0.01, the results
are compared between the proposed Algorithm 1 and the technique in Kothare et al. (1996),
which is the technique capable of dealing with LPV systems with measurement error in the
previous literatures. The state response is shown in Figure 3 and the cost value of Algorithm
1 is 28.73 and that of Kothare et al. (1996) is 38.44. Therefore, it reflects that Algorithm 1
can achieve better control performance than the design in Kothare et al. (1996).
The above results verify the effectiveness of utilises the information of system parameters
in Algorithm 1.

5 Conclusions

This paper presents a new approach to RMPC for LPV systems with bounded rates of
parameter variations and bounded parameter measurement errors. By adopting a sequence
of feedback control laws corresponding to the parameter variation of LPV systems, the
information on system parameters can be made use of, which is helpful to reduce the
design conservativeness and then improve the control performance of RMPC. The recursive
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feasibility and closed-loop stability of the proposed MPC can be guaranteed by the proposed
RMPC.
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