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Abstract: Robustness has received too little attention in Quantitative
Trait Loci (QTL) analysis in experimental crosses. This paper discusses
a robust QTL mapping algorithm based on Composite Interval
Mapping (CIM) model by minimising β-divergence using the EM like
algorithm. We investigate the robustness performance of the proposed
method in a comparison of Interval Mapping (IM) and CIM algorithms
using both synthetic and real datasets. Experimental results show that
the proposed method significantly improves the performance over the
traditional IM and CIM methods for QTL analysis in presence of
outliers; otherwise, it keeps equal performance.
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1 Introduction

The basic methodology for mapping QTLs involves arranging a cross between
two inbred strains differing substantially in a quantitative trait: segregating
progeny are scored both for the trait and for a number of genetic markers. A
cross between two parental inbred lines P1 and P2 is performed to produce an
F1 population. The F1 progeny are all heterozygote’s with the same genotype.
Typically, the segregating progeny are produced by a backcross (B1 = F1 × parent)
or an intercross (F2 = F1 × F1).

With the rapid advances in molecular biology, it has become possible to gain
fine-scale genetic maps for various organisms by determining the genomic positions
of a number of genetic markers (RFLP, isozymes, RAPDs, AFLP, VNTRs, etc.)
and to obtain a complete classification of marker genotypes by using codominant
markers. These advances greatly facilitate the mapping and analysis of QTLs.
Thoday (1960) first introduced the idea of using two markers to bracket a region
for testing QTLs. Lander and Botstein (1989) implemented a similar, but much
improved, method to use two adjacent markers to test the existence of a QTL
in the interval by performing a Likelihood Ratio Test (LRT) at every position
in the interval. This is termed as IM. However, IM can bias identification and
estimation of QTLs when multiple QTLs are located in the same linkage group
(Lander and Botstein, 1989; Haley and Knott, 1992; Jansen, 1992, 1993). It is
also not efficient to use only two markers at a time for mapping analysis. In
view of these problems, QTL mapping combining IM with the multiple marker
regression analysis is discussed by Jansen (1993), Zeng (1993). Zeng (1994) named
this combination as CIM. It avoids the use of multiple marker intervals to deal
with the problems of mapping multiple QTL by conditioning a test for a QTL on
some linked or unlinked markers that diffuse the effects of other potential QTLs.
Kao and Zeng (1997) generalise the CIM model for QTL analysis by maximising
likelihood function using EM algorithm. However, the QTL analysis algorithms
mentioned above are not robust against outliers. Mollah and Eguchi (2008) have
discussed robust QTL analysis for F2 intercross population using CIM model by
minimising β-divergence (Minami and Eguchi, 2002). In this paper, an attempt
is made to extend the discussion of Mollah and Eguchi (2008) for robust QTL
analysis using CIM model with a backcross population.

In Section 2, we discuss the genetic model and its extension to statistical CIM
model. Section 3 introduce the proposed method for robust QTL analysis based
on CIM model. We demonstrate the performance of the proposed method using
both simulated and real datasets in Section 4 and make a conclusion of our study
in Section 5.
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2 Genetic model

Let us consider a QTL in the backcross population in which the frequencies of
genotypes QQ and Qq are 1/2 and 1/2, respectively. The genetic model for a QTL
is as follows:

G =
[
G2

G1

]
=

[
1
1

]
µ +

[
1/2

−1/2

]
[a] = 12×1µ + DE.

It was proposed to model the relation between a genotypic value G and the genetic
parameters µ and a. Here G2 and G1 are the genotypic values of genotypes QQ
and Qq. We call D the genetic design matrix. The unique solutions of the genetic
parameters in terms of genotypic values and frequencies are µ = (G2 + G1)/2 and
a = G2 − G1.

Let loci M, with alleles M and m, and N with alleles N and n, denote two
flanking markers for an interval where a putative QTL is being tested. Let the
unobserved QTL locus Q with alleles Q and q be located in the interval flanked by
markers M and N. The distribution of unobserved QTL genotypes can be inferred
from the observed flanking marker genotypes according to the recombination
frequencies between them. To infer the distribution of QTL genotype, we assume
that there is no crossover interference and also that double recombination events
within the interval are very rare and can be ignored to simplify the analysis.
The conditional probabilities of the QTL genotypes given marker genotypes
are given in Table 1 for the backcross population. We extract the conditional
probabilities from this table to form a matrix Q for backcross population.

Table 1 Conditional probabilities of a putative QTL genotype given the flanking
marker genotypes for a backcross population

QTL genotypes

Marker genotypes Expected frequency QQ(pj1) Qq(pj2)

MN/MN (1 − rMN )/4 1 0
MN/Mn rMN/2 1 − p p

MN/mN rMN/4 p 1 − p

MN/mn (1 − rMN )/2 0 1

Here p = rMQ/rMN , where rMQ is the recombination fraction between the left marker
M and the putative QTL and rMN is the recombination fraction between two flanking
markers M and N. The possibility of a double recombination event in the interval is
ignored.

2.1 Statistical model for QTL mapping

We assume no epistasis between QTLs, no interference in crossing over, and
only one QTL in the testing interval. QTL mapping data consists of two parts,
yj(j = 1, . . . , n) for the quantitative trait value and Xj , (j = 1, . . . , n) for the
genetic markers and other explanatory variables, for example sex or diet. A CIM
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statistical model based on the genetic model for testing a QTL in a marker interval
is proposed as

yj = ax∗
j + Xjγ + εj (1)

where

x∗
j =

{
1/2, for QQ

−1/2, for Qq

yj is the phenotypic value of the jth individual; Xj , a subset of Xj , may contain
some chosen markers and other explanatory variables; γ is the partial regression
coefficient vector including the mean µ; and εj is a random error. We assume
εj ∼ N(0, σ2). The advantages of using Xj in QTL mapping have been discussed
in Kao and Zeng (1997), Zeng (1993, 1994). Basically, it could control for the
confounding effect of linked QTLs and reduce the residual variance in the analysis.

2.2 QTL analysis by CIM model based on maximum
likelihood estimators

Given the data with n individuals, the likelihood function for θ = (p, a,γ, σ2) is

L(θ |Y, X) =
n∏

j=1

[ 2∑
i=1

pjiφ

(
yj − µji

σ

)]
(2)

where φ(.) is a standard normal probability density function, µj1 = a/2 + Xjγ
and µj2 = −a/2 + Xjγ. The density of each individual is assumed as a mixture
of three normal densities with different means and mixing proportions. The
mixing proportions pji’s which are functions of the QTL position parameter p,
are conditional probabilities of QTL genotypes given marker genotypes. The EM
algorithm is used to obtain MLEs of the likelihood treating the normal mixture
model as an incomplete-data problem.

In QTL mapping, a statistical test is performed whether there is a QTL at a
given position within a marker interval. The statistical hypothesis are

H0 : a = 0 (i.e., there is no QTL at a given position),
H1 : a �= 0 (i.e., there is a QTL at that position).

To test the hypothesis, the LRT statistic

LRT = −2 log
[
supΘ0

L(θ |Y, X)
supΘ L(θ |Y, X)

]

= 2
[
log sup

Θ
L(θ |Y, X) − log sup

Θ0

L(θ |Y, X)
]

(3)

is used as the test statistic, where Θ0 and Θ are the restricted and unrestricted
parameter spaces. The threshold value to reject the null hypothesis can not be
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simply chosen from a χ2 distribution because of the violation of regularity
conditions of asymptotic theory under H0. The number and size of intervals should
be considered in determining the threshold value since multiple tests are performed
in mapping. The hypothesis are usually tested at every position of an interval
and for all intervals of the genome to produce a continuous LRT statistic profile.
At every position, the position parameter p is predetermined and only a,γ and σ2

are involved in estimation and testing. If the tests are significant in a chromosome
region, the position with the largest LRT statistic is inferred as the estimate of
the QTL position p, and the MLEs at this position are the estimates of a,γ
and σ2 obtained by EM algorithm (Kao and Zeng, 1997). Note that EM algorithm
has been also used to obtain MLEs in several studies of QTL mapping analysis
(Lander and Botstein, 1989; Carbonell et al., 1992; Jansen, 1992; Zeng, 1994).

3 Robust QTL analysis by CIM model based on minimum
β-divergence estimators

The β-divergence between two probability density functions p(u) and q(u) is
defined as

Dβ(p, q) =
∫ [

1
β

{
pβ(u) − qβ(u)

}
p(u) − 1

β + 1
{
pβ+1(u) − qβ+1(u)

}]
du,

for β > 0. It is non-negative, that is Dβ(p, q) ≥ 0, equality holds iff p = q,
(Basu et al., 1998; Minami and Eguchi, 2002). We note that β-divergence reduces
to Kullback Leibler (KL) divergence when β −→ 0, that is

lim
β↓0

Dβ(p, q) =
∫

p(u) log
p(u)
q(u)

du = DKL(p, q).

The minimum β-divergence estimators are defined by the minimisation of
the β-divergence between the empirical distribution p(y) and the parametric
distribution fθ(y) with respects to the parameter θ = {θ1, θ2, . . . , θk}. That is

θβ = argmin
θ

Dβ(p(y), fθ(y))

= argmax
θ

Lβ(θ) (4)

where,

Lβ(θ) =
1
β

∫
p(y)fβ

θ (y)dy − bβ(θ) (5)

with

bβ(θ) =
1

β + 1

∫
fβ+1

θ (y)dy
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which is independent of y. The empirical version of equation (5) with respect to
the CIM model (1) can be written as

Lβ(θ |Y, X) =
1

nβ

n∑
j=1

fβ
θ (yj |Xj) − bβ(θ, X) (6)

which we call β-likelihood function for convenience of presentation. In our current
context

fθ(yj |Xj) =
2∑

i=1

pjiφ

(
yj − µji

σ

)
(7)

be the normal mixture model, where the notations φ(.), pji, µji, Xj and
θ = (p, a,γ, σ2) are defined in equation (2). Then the minimum β-divergence
estimators of a,γ and σ2 are obtained maximising β-likelihood function using EM
like algorithm treating the normal mixture model as an incomplete-data density
as discussed below. Let

g(x∗
j ) =

{
pj1, if x∗

j = 1/2

pj2, if x∗
j = −1/2

(8)

is the distribution of QTL genotype specified by x∗
j . Let us treat the unobserved

QTL genotype x∗
j as missing data, denoted by yj(mis), and treat trait (yj) and

selected markers and explanatory variables (Xj) as observed data, denoted by
yj(obs). Then, the combination of yj(mis) and yj(obs) is the complete data, denoted
by yj(com). The conditional distribution of observed data, given missing data, is
considered as an independent sample from a population such that

yj | (θ, Xj , x
∗
j ) ∼ N(ax∗

j + Xjγ, σ2).

Thus the complete-data density model in this problem is regarded as a two-stage
hierachical model. First the value of random variable x∗

j is sampled by a binomial
experiment to decide QTL genotype, and then a normal variate for that genotype
is generated. The values of random variable x∗

j of individual j are 1/2 and −1/2
for QTL genotype QQ and Qq with probability pj1 and pj2, respectively. Thus the
complete-data density function is given by

f(yj(com) | θ) =
{

pj1φ

(
yj − µj1

σ

)}( 1
2+x∗

j )

×
{

pj2φ

(
yj − µj2

σ

)}( 1
2 −x∗

j )

.

To compute the mixing proportions pj1 and pj2 with respect to QTL genotypes
QQ and Qq for each individual, p is determined at a given position using the ratio
of two recombination fractions as defined in Table 1 based on flanking markers.
The recombination fractions can be computed using Haldane’s map function or any
other map function also. To obtain the minimum β-divergence estimators of a,γ
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and σ2 by maximising β-likelihood function using EM like algorithm, the iteration
of the (t + 1) EM-step is as follows:

E-step: The conditional expected complete-data β-likelihood with respect to the
conditional distribution of Ymis given Yobs and the current estimated parameter
value θ(t) is given by

Qβ(θ | θ(t)) =
∫

Lβ(θ |Ycom)h(Ymis |Yobs, θ = θ(t))dYmis

=
1

nβ

n∑
j=1

∫
fβ(yj(com) | θ)×h(yj(mis) | yj(obs), θ = θ(t))dyj(mis) − lβ(θ)

=
1

nβ

n∑
j=1

2∑
i=1

[
φ

(
yj − µji

σ

)
pji

]β

× π
(t)
ji − lβ(θ)

where lβ(θ) = (1 + β)−3/2(2πσ2)−β/2 and

πji =
pjiφ(yj−µji

σ )∑2
i=1 pjiφ(yj−µji

σ )
(9)

is the posterior probability of ith QTL genotype with respect to the jth individual
(i = 1, 2; j = 1, 2, . . . , n).

M-step: Find θ(t+1) to maximise the conditional expected β-likelihood by
taking the derivatives of Qβ(θ | θ(t)) with respect to each parameter. The solutions
of parameters in closed form are as follows.

a(t+1) = (Y − Xγ(t))T Π(t)
β D

[
1T Π(t)

β (D#D)
]−1 (10)

γ(t+1) =
[
XT

{
X#(Π(t)

β 1
)}]−1[

XT
{
Y #

(
Π(t)

β 1
)

− Π(t)
β Da(t+1)}]

(11)

σ2(t+1)
=

[
(Y − Xγ(t+1))T {(Y − Xγ(t+1))#(Πβ1)}

−2(Y − Xγ(t+1))T Π(t)
β Da(t+1) + V (t)a2(t+1)]

[
1T Π(t)

β 1 − β(1 + β)−3/2]−1 (12)

where

Πβ =
{[

exp
{

− 1
2

(
yj − µji

σ

)2}
pji

]β

πji

}
n×2

, (13)

V = 1T Πβ(D#D) and the notation # denotes Hadamards product, which is
the element-by-element product of corresponding elements of two same-order
matrices. The coefficient of πji in Πβ is known as β-weight for jth individual
in the ith QTL genotype. For β = 0, the matrix Πβ reduces to the matrix of
standard posterior probabilities. It should be noted here that each element of
matries 1’s around equations (10)–(12) is 1 with appropriate orders for matrix
operation. The E and M steps are iterated until a convergent criterion is satisfied.
The converged values of a,γ and σ2 are the values of minimum β-divergence
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estimators. Note that minimum β-divergence estimators (10), (11) and (12) with
β = 0 reduce to Maximum Likelihood Estimators (MLE) proposed by Kao and
Zeng (1997) for QTL mapping with backcross population.

Under null hypothesis Ho: a = 0, the minimum β-divergence estimators for the
parameters γ and σ2 are obtained iteratively as follows

γ(t+1) =
[
XT

{
X#

(
W

(t)
β 1

)}]−1{
X#

(
W

(t)
β 1

)}T
Y (14)

σ2(t+1)
= (Y − Xγ(t+1))T

[(
Y − Xγ(t+1))#W

(t)
β

]
[
1T W

(t)
β − β(1 + β)−3/2]−1 (15)

where

Wβ =
[

exp
{

− β

2

(
yj − Xjγ

σ

)2}]
n×1

(16)

which is the vector of β-weights under Ho. Thus the β-LOD score for the evidence
of a QTL is given by

LODβ = 2n
{

sup
Θ

Lβ(θ |Y, X) − sup
Θ0

Lβ(θ |Y, X)
}

(17)

where Θ0 and Θ are the restricted and unrestricted parameter spaces as before.
For β −→ 0, the LODβ reduces to the Log-likelihood Ratio Test (LRT) criterion as
defined by equation (3). During iteration, first component of γ should be initialised
by the median of the phenotypic observations.

3.1 Robustness

The minimum β-divergence estimators for θ = {a,γ, σ2} as defined in
equations (10)–(12) under full model (H1) and (14)–(15) under reduced model
(H0) are all weighted estimators. All estimators are weighted by β-weights
described in Πβ and Wβ under H1 and H0, respectively. In both Πβ and Wβ as
defined in equations (13) and (16), a common scaling factor

exp
{

− β

2

(
y − µ

σ

)2}

produces larger β-weights with the usual phenotypic observations and smaller
β-weights with the outlying observations those are far from the mean µ during
parameter estimation with β > 0. For a wide range of β > 0 denoted by Rβ ,
β-weights corresponding to only outlying observations reduce to almost zero.
Thus outlying observations cannot influence the minimum β-divergence estimators
for β ∈ Rβ . A larger β increase the robustness but decrease the efficiency of the
estimators and vice versa for the smaller β. Therefore, a smaller β ∈ Rβ is better
than the larger β ∈ Rβ for robust and efficient estimation. However, Rβ should
satisfy 0 ≤ Rβ ≤ 1 (Basu et al., 1998; Minami and Eguchi, 2002).
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4 Simulation study

To illustrate the performance of the proposed method in a comparison of
traditional IM (Lander and Botstein, 1989) and CIM (Kao and Zeng, 1997)
algorithms for QTL mapping, we consider backcross population for simulation
study. Let us first assume only one QTL on a chromosome with 10 equally spaced
markers, where any two successive marker interval size is 5 cM. The QTL position
is located in the middle of chromosome 10. The true values for the parameters in
the CIM model are assumed as µ = 0.05, a = 0.5, γ = 0.5 and σ2 = 1. To test the
null hypothesis Ho: a = 0 against the existence of a QTL (a �= 0), we generated
250 trait values with heritability h2 = 0.1 using the CIM model as defined in
equation (1). Figure 1(a) represent the scatter plot of 250 trait values and
a covariate. To investigate the robustness of each of the three methods, we
contaminated 15% trait values in this dataset by outliers. Figure 1(b) shows
the scatter plot of contaminated dataset. Then we computed LOD scores by
IM, CIM and the proposed methods for both types of datasets. It should be
noted here that the name ‘LOD scores’ is used in this paper for convenience of
presentation instead of both LRT scores of CIM method and the β-LOD scores
of proposed method, respectively. Figure 1(c) shows the LOD scores profile for
the uncontaminated dataset, where dotted, dot dash and solid lines represents
the LOD scores at every 2 cM position in the chromosomes for IM, CIM and
the proposed method with β = 0.2, respectively. Figure 1(d) shows the LOD
scores profile for the contaminated dataset, where dotted, dot dash and solid lines
represents the LOD scores at every 2 cM position in the chromosomes as before for
IM, CIM and the proposed method with β = 0.2, respectively. It is seen that the
highest LOD score peak occurs in the true QTL position of the true chromosome
10 by all three methods for the uncontaminated dataset. However, in presence
of outliers, the highest LOD score peak occurs in the true QTL position by the
proposed method only.

We also investigate the performance of the proposed method with interval size
15 cM between two successive markers with the previous setting. We observe that
the performance of the proposed method in a comparison of the IM and CIM
methods are almost same as previous. We also observe that the performance of
these three methods are good in presence of smaller phenotypic outliers and high
leverage points (outliers with covariates). The performance of IM and CIM are not
good in presence of larger phenotypic outliers, while in this case performance of the
proposed method is good only. It should be noted here that the mixing proportions
(πji; i = 1, 2) of Gaussian mixture distribution for each individual (j = 1, 2, . . . , n)
are computed based on QTL position parameter p using R/qtl package (Broman
et al. (2003), homepage: http://www.rqtl.org/), where p is determined based on
pairwise marker genotypes using Haldane’s map function. Other parameters for
CIM model are estimated iteratively by R programming. Results for IM are
obtained by R/qtl software.
To investigate the performance of the proposed method in a comparison of
traditional IM and CIM algorithms in presence of multiple unlinked QTLs
based on simulated data for 200 backcross progeny in an organism with 19
chromosomes of 50 cM each, we generated the quantitative phenotype for each
individual by summing individual allelic effects at 3 QTLs and adding a covariate
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with random environmental normal noise. For each individual, crossovers were
generated assuming no interference and genotypes recorded with 10 equally spaced
markers throughout the genome. The QTLs positions were located on the middle
of chromosomes 10, 13 and 16, respectively. Figure ??(a) represent the scatter
plot of 200 trait values and a covariate. To discuss the robustness of each of the
three methods in presence of multiple unlinked QTLs, we contaminated around
20% trait values in this dataset by outliers (+). Figure ??(b) shows the scatter
plot of contaminated dataset. Then we compute LOD scores by IM, CIM and
the proposed methods for both types of datasets. Figure ??(c) shows the LOD
scores profile for the uncontaminated dataset, where dotted, dot dash and solid
lines represents the LOD scores at every 2 cM position in the chromosomes for
IM, CIM and the proposed method with β = 0.2, respectively. Figure ??(d) shows
the LOD scores profile for the contaminated dataset, where dotted, dot dash and
solid lines represents the LOD scores at every 2 cM position in the chromosomes
as before for IM, CIM and the proposed method with β = 0.2, respectively. It is
seen that the higher and statistically significant LOD score peak occurs in the
true QTL positions of chromosomes 10, 13 and 16 by all three methods for
the uncontaminated dataset. However, in presence of outliers, the higher and
significant LOD score peak occurs in the true 3 unlinked QTL positions by the
proposed method only.

4.1 An example of real data analysis

To investigate the performance of the proposed method for real data analysis
in a comparison of traditional IM and CIM algorithms, we consider the dataset
of Sugiyama et al. (2001) which is available in R/qtl package (Broman et al.
(2003), homepage: http://www.rqtl.org/). This dataset was analysed to investigate
the genetic control of salt-induced hypertension on male mice from a reciprocal
backcross between the salt-sensitive c57BL/6J and the non-salt-sensitive A/J(A)
inbred mouse strains. Figure ??(a) represent the high blood pressure of 250 male
progeny backcross to B6. To discuss the robustness of each of the three methods
in the case real data analysis, we contaminated around 15% high blood pressure in
this dataset by outliers (+). Figure ??(b) shows the scatter plot of contaminated
dataset. Then we computed LOD scores by IM, CIM and the proposed methods
for both types of datasets. Figure ??(c) shows the LOD scores profile for the
uncontaminated dataset, where dotted, dot dash and solid lines represents the
LOD scores at every 2 cM position in the chromosomes for IM, CIM and the
proposed method with β = 0.2, respectively. Figure ??(d) shows the LOD scores
profile for the contaminated dataset, where dotted, dot dash and solid lines
represents the LOD scores at every 2 cM position in the chromosomes as before for
IM, CIM and the proposed method with β = 0.2, respectively.

Genome-wide LOD thresholds are obtained by permutation tests (Churchill
and Doerge, 1994), using 10,000 permutation replicates. For comparisons with the
existing results of Sugiyama et al. (2001), we estimated 95% (63%) genome-wide
LOD thresholds for IM, CIM and the proposed methods those are 2.9 (1.8),
6.8 (5.7) and 6.5 (5.6), respectively. Because of the larger differences in the
LOD thresholds for the three methods, we subtracted (6.8 − 2.9) = 3.9 and
(6.5 − 2.9) = 3.6 from the LOD scores of CIM and the proposed methods
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respectively, for convenience of presentation and comparison of three methods
using the same decision boundary at a LOD threshold 2.9. In both Figures ??(c)
and (d), the long-dash lines parallel to the x-axis indicate genome-wide suggestive
(LOD threshold 1.8 with p-value ≤ 0.37) and significant (LOD threshold 2.9
with p-value ≤ 0.05) QTLs associated with the blood pressure, respectively.
Figure ??(c) shows that two QTLs on chromosome 1 and two QTLs on
chromosome 4 are statistically highly significant genome-wide, and one on each
of chromosomes 2, 5, 6 and 15 are genome-wide suggestive by all three methods
for the uncontaminated real dataset. The same results were also reported by
Sugiyama et al. (2001) using one-way ANOVA. However, in presence of outliers,
almost similar results are obtained by the proposed method only as shown
in Figure ??(d) using solid line. Therefore, the proposed method significantly
improves the performance over the traditional IM and CIM methods in presence
of outliers; it keeps equal performance otherwise.

5 Conclusion

This paper discusses a new robust QTL mapping algorithm based on CIM model
in an experimental organisms by minimising β-divergence using the EM like
algorithm. The proposed method with β = 0 reduces to the traditional CIM
method. The value of the tuning parameter β plays a key role on the performance
of the proposed method. An appropriate value for the tuning parameter β may be
selected by cross validation. Based on our experience, we can select an appropriate
β within 0.1–0.5 such that maximum 50% components of Wβ reduces to zero.
It should be noted here that smaller β is better than the larger β for robust
and efficient estimation. Therefore, our suggestion is to use β = 0.2 for data
analysis. However, we would like to discuss an adaptive selection procedure for
the tuning parameter β in the extended version of this paper in near future.
Simulation studies including real data analysis show that the proposed method
significantly improves the performance over the traditional IM and CIM methods
in presence of outliers; otherwise, it keeps equal performance.
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