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Abstract: Non-polynomial hard (NP-hard) problems are challenging due to time-constraint. The 
bacteria foraging optimisation (BFO) algorithm is a metaheuristics algorithm that is used for NP-
hard problems. BFO is inspired by the behaviour of the bacteria foraging such as E. coli. The aim 
of BFO is to eliminate weak foraging properties bacteria and maintain breakthrough foraging 
properties bacteria toward the optimum. However, reaching to optimal solutions are time-
demanding. In this paper, we modified single objective and multi-objective BFO (MOBFO) by 
adding mutation and crossover from genetic algorithm operators to update the solutions in each 
generation, and local tabu search algorithm to reach the local optimum solution. Additionally, we 
used fast non-dominated sort algorithm in MOBFO to find the best non-dominated solutions. We 
evaluated the performance of the proposed algorithms with quadratic assignment problem 
instances. The experimental results show that our approaches outperform some previous 
optimisation algorithms in both convergent and divergent aspects. 
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1 Introduction 
The goal of optimisation process is to find the optimal 
solution with minimum cost for non-deterministic 
polynomial hard (NP-hard) problems (Alothaimeen and 
Arditi, 2019; Gunantara, 2018). Basically, there are two 
types of NP-hard problems, single objective and  
multi-objective optimisation (Deb, 2004). Evolutionary 
algorithm (EA) is considered as an effective method to find 
optimal solutions for such problems (Ojha et al., 2019; 
Emmerich and Deutz, 2018). And, there are many state-of-
the-art evolutionary computation algorithms that have been 
used to solve the combinatorial optimisation problems such 
as  
non-dominated sorting genetic algorithm II (NSGA-II) (Deb 
et al., 2002), Strength Pareto Evolutionary  
Algorithm Version 2 (SPEA2) (Zitzler and Thiele, 1999), 
multi-objective evolutionary algorithm based on 
decomposition (MOEA/D) (Zhang and Li, 2007), and 
Pareto-Archived Evolution Strategy (PAES) (Knowles and 
Corne, 2000). Recently, Li and Wang (2017) improved 
cuckoo search algorithm by adding combination of the 
learning-evolve thought with Gaussian distribution to 
improve the convergence velocity and optimisation 
accuracy in unconstrained function optimisation problems. 
Wang and Zhang (2016) improved artificial bee colony 
algorithm by updating a new search equation for onlooker 
bees, where optimal and suboptimal solutions were 
considered in iteration process, and an opposition-based 
method applied to initial and final solution to enhance the 
global convergence. Wang and Song (2017) combined 
chaotic mapping strategy and the biogeography-based 
optimisation optimal migration model and applied on 
function optimisation problems. Luo et al. (2015) proposed 
a discrete bacterial foraging optimisation (DBFO) based on 
the idea of bacteria foraging optimisation (BFO) algorithm. 
They applied binary encoding to solve both discrete and 
continuous optimisation problems and rotation step to 
update velocities of bacteria. Then, they evaluated the 
efficiency of algorithm through three classical benchmark 
functions and spectrum allocation problem of cognitive 
radio. Cui et al. (2019, 2020) applied a modified particle 
swarm optimisation (PSO) and pigeon-inspired optimisation  
 

 
(PIO) to solve many-objective optimisation problems. Yi  
et al. (2016) applied multi-objective BFO (MOBFO) on 
aluminium electrolysis production process to find the 
optimal solutions. They used PAEA approach and adaptive 
foraging strategy (AFS) to balance convergence and 
diversity of Pareto front. Zhao et al. (2016) proposed a 
novel BFO to solve the permutation flow-shop scheduling 
problem (PFSP), that is a typical combinatorial NP-hard 
problem with discrete solution space. They showed that 
convergent speeds and entrapment in the local optimum that 
were incurred by original BFO can be handled by 
combining a differential evolution operator and a chaotic 
search operator in chemotactic part of BFO algorithm. 
Darvishi et al. (2014) used MOBFO to solve the optimal 
power flow (OPF), that is a multi-objective NP-hard 
problem. They proposed a new BFO algorithm by 
embedding the fuzzy strategy to original BFO to eliminate 
the problem of choosing the penalty factors for constraints 
and behave them just like objective function. Most of the 
proposed methods modified either chemotactic part or 
elimination-dispersal part of BFO algorithm for the single 
or multi-objective problems. 

Quadratic assignment problem (QAP) (Koopmans and 
Beckmann, 1957) and multi-objective QAP (mQAP) 
(Knowles and Corne, 2003) are the NP-hard problems so 
that the solutions for them cannot be found in polynomial 
time. Thus, there should be an optimisation algorithm to 
solve such NP-hard problems. Recently, many EAs have 
been used for the solution of QAP and mQAP. Tosun 
(2014) used genetic algorithm (GA) (Tosun et al., 2013) to 
solve single objective QAP. He proposed a new 
recombination of operator based on order-1 crossover 
algorithm and used quick sort algorithm to generate 
different chromosomes partitions. (Benlic and Hao, 2015) 
proposed a population-based memetic algorithm (BMA) for 
the solution of single objective QAP. They used an effective 
local optimisation algorithm breakout local search (BLS) 
(Benlic and Hao, 2013) within the evolutionary computing 
framework for improvement of the results. Zinflou et al. 
(2013) used genetic immune strategy (GISMOO) for the 
solution of mQAP. GISMOO is hybrid between GA and 
artificial immune system (AIS) to find the solutions in  
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mQAP. The updating part of this algorithm is classical GA 
operators and AIS cloning selection principle. Michalak 
(2016) proposed a new local search method that utilises the 
knowledge concerning promising search directions and can 
be used as a general framework and combined with an EA 
for the solution of mQAP and travelling salesman problem 
(TSP). Shukla (2015) used bat algorithm for the solution of 
QAP. They suggested that Bat algorithm cannot be directly 
used for solving discrete search space problem like QAP, 
thus they used smallest position value (SPV) a heuristic rule 
to enable the bat algorithm for the solution of QAP. 

In this paper, we modified BFO for single objective 
problems and MOBFO for multi-objective problems. For 
single objective BFO, we added swap mutation into 
chemotactic part to avoid the repeated permutations and 
local Tabu search algorithm (Tabitha et al., 2009) to the end 
of the algorithm in order to optimise the cost of final 
permutation and avoid the local optimum. For MOBFO, we 
added swap mutation and uniform-like crossover (ULX) 
operators (Tosun, 2014; Tosun et al., 2013) in chemotactic 
part and local tabu search algorithm to the end of the 
algorithm. Additionally, we used fast non-dominated sort 
method (Deb et al., 2002) into elimination and dispersal  
part of the MOBFO algorithm to optimise obtained  
non-dominated set solutions in each iteration. We applied 
modified BFO and MOBFO on QAP and mQAP problems, 
respectively. Our contributions for this paper are: first, we 
modified BFO and MOBFO algorithms for the purpose of 
single and multi-objective problems. Second, regardless of 
the problem size, these algorithms can find compatible 
solutions for both QAP and mQAP. Third, however the 
optimum solutions may not be found eventually, but the 
experimental results show that the average percentage gap 
of the solutions for QAP are lower than state-of-the-arts 
algorithm and the non-dominated solutions for mQAP are 
very close to Pareto front. 

2 Bacteria foraging optimisation 
BFO algorithm is one of the bio-inspired optimisation 
algorithms that is inspired from the biomimicry of the  
E. coli bacteria. BFO introduced by Passino (2002, 2010) 
and its concept is to eliminate the bacteria that have the 
weak foraging properties and maintain the bacteria that have 
breakthrough foraging properties toward the nutrient 
collection or maximise the energy per unit time. Each 
bacterium communicates with other bacteria by sending the 
signals, and bacteria move to the next step for collecting 
nutrient if previous factors have been satisfied. Initially, 
BFO introduced to make a bridge between microbiology 
and engineering, and mimics some properties of the bacteria 
foraging such as chemotactic, reproduction, and quorum 
sensing, but later in 2010, he investigated and compared 
BFO with other optimisation algorithms (Passino, 2010). 
Basically, BFO consists of four principal parts: chemotactic, 
swarming, reproduction, elimination and dispersal (Das  
et al., 2009), and a brief introduction of each part is given as 
follows: 

2.1 Chemotactic 
In biology, the chemotactic is a process of bacteria 
movement for gaining the nutrient. One of the E. coli 
bacterium properties is that, it can move in two diverse 
ways, swimming and tumbling. In swimming, the bacterium 
swims in the same direction to search for nutrient, and in 
tumbling, bacterium changes the direction to another 
direction. Assume θi(j, k, l) shows the current position of ith 
bacterium, jth chemotactic step, kth reproduction step, and lth 
elimination and dispersal step, then the position of 
bacterium in the next chemotactic step by tumbling will be 
as: 
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where C(i) shows the number of steps in the random 
direction that is specified by the tumbling of ith bacterium 
and Δ(i) indicates a vector of random directions in 
population size with continuous values between [–1, 1]. 

2.2 Swarm 
A group of E. coli bacteria arrange themselves in travelling 
ring by moving toward the nutrient collection. When the 
cells stimulated by a high level of succinate, release an 
attractant aspartate, such that the cells aggregate into groups 
and move as concentric patterns of swarms with high 
bacteria density. The cell-to-cell signalling in E. coli swarm 
can be represented as following function: 
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where Jcc(θ, P(j, k, l)) shows objective function cost and in 
each step the amount of this objective function is added to 
the main cost (where the total cost to be minimised). In 
other words, Jcc shows how far a bacterium is from the 
fittest bacterium. θ is the position of p-dimensional search 
space of ith bacterium, jth chemotactic step, kth reproduction 
step, and lth elimination-dispersal step, P is number of 
variables to be optimised in each bacterium i, S is the total 
number of bacteria, and dattract, wattract, hrepellent, wrepellent are 
the diversity coefficients (constant values) (Das et al., 
2009). 

2.3 Reproduction 
After chemotactic and swarming parts got completed, some 
of the bacteria have enough nutrient and some others not. In 
the reproduction part, those bacteria that have enough 
nutrient will be reproduced and others will be eliminated. 
To do so, a health status of each bacterium is calculated. 
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The health status is the sum of step fitness during its life and 
can be defined as: 

1

( , , , )
cN

i
health

j

J J i j k l
=

=  (3) 

where Nc is total number of chemotactic steps, and Jhealth is 
calculated for ith bacterium, jth chemotactic step, kth 
reproduction step, and lth elimination and dispersal step. 
Eventually, the health status of all bacteria will be sorted in 
ascending order and the first half of the bacteria reproduce 
and surrogate into second half of the bacteria based on their 
top health status. In other words, the smaller Jhealth values 
related to healthier bacteria. Thus, bacteria with smaller 
health values have more chance to survive. This process not 
only keeps the population constant, but also the healthier 
bacteria continue to next generation. 

2.4 Elimination and dispersal 
When the density of bacteria getting high in a small area, 
the temperature of this area getting high and may not be 
enough nutrient for all bacteria as well. Thus, in this part, 
the population of bacteria may randomly change their 
positions to avoid these flaws. Elimination and dispersal 
event relocates the bacteria in different environments to 
avoid the bacteria death and local optimum solution(s). 

In single objective BFO, the aim is to find one single 
solution, whereas the aim of the MOBFO is to obtain a set 
of non-dominated solutions to be closed to optimum Pareto 
front. Thus, Niu et al. (2013) described MOBFO approach 
to solve multi-objective optimisation problems. The idea of 
integration between bacteria health sorting and Pareto front 
mechanism are developed to search for non-dominated set 
solutions of multi-objective problems. Consequently, BFO 
algorithm can be used for single objective problems and 
multi-objective problems. 

3 Proposed method 
QAP is one of discrete optimisation problems that can be 
introduced in two different ways: single objective QAP and 
mQAP. First, we describe the proposed single objective 
BFO algorithm for the solution of single objective QAP, 
and we continue with the proposed MOBFO for the solution 
of mQAP in the next section. 

3.1 Single objective BFO 
We proposed a new BFO algorithm by adding swap 
mutation operator into the chemotactic part and local search 
algorithm at the end of algorithm to be applied to final 
solution. Swap mutation (Soni and Kumar, 2014) operator is 
one of the genetic operators that are used to update the 
solutions in a population. Given a permutation of a QAP 
solution, swap mutation selects two locations of the solution 
space and exchanges them, this happens only one time for 
each solution in the population and the population gets 

updated for next run. In modified BFO, we generated a 
random number between [0, 1] for each permutation and if 
the random number is greater than 0.5, we swapped the 
entities of two random locations, otherwise we divided the 
permutation into three blocks and applied the swap 
mutations in each block. Tabu search algorithm (Tabitha  
et al., 2009) is one of the well-known local search 
algorithms that searches through solution space locally and 
periodically to improve the solution x to x′ around x. 
Basically, Tabu search is mostly used for NP-hard problems 
and it varies from other local search algorithms based on the 
Tabu list. Tabu list is a typical short-term memory that 
includes previously visited solutions and stores some of the 
attributes of the solutions. Thus, it does not allow to revisit 
the solutions so that the algorithm examines those 
movements that are not in the Tabu list. Consequently, the 
Tabu search algorithm is applied on final solution, and the 
new solution will be replaced with old solution if it 
produces a better result. The aim in the proposed single 
objective BFO is to find a single permutation solution with 
minimum cost in QAP and it is designed in three parts: 

1 chemotactic 

2 reproduction 

3 elimination and dispersal. 

Table 1 Initial settings for algorithm parameters and 
coefficients 

Variables Setting 

Dimension of search space (p) 50 
Number of bacteria per generation (S) 100 
Chemotactic steps (Nc) 100 
Reproduction steps (Nre) 4 
Elimination-dispersal steps (Ned) 5 
Probability for elimination-dispersal (Ped) 0.25 

The proposed single objective BFO is given in Algorithm 1 
and consists of ten steps. In step 1, all the variables are 
initialised with preconceived constant numbers (Table 1). In 
step 2, a set of permutations with p size are randomly 
generated and QAP fitness function (Koopmans and 
Beckmann, 1957) is computed for each permutation. 

Algorithm 1 

1 Parameter initialisation: 
 p, S, Nc, Ns, Nre, Ned, Sr, Ped 
 p dimension of search space 
 S population of bacteria 
 Nc chemotactic parts for each bacterium 
 Nre reproduction part 
 Ned elimination dispersal part 
 Sr = S/2 bacteria split 
 Ped probability of elimination-dispersal. 
2 Generate random permutation for each bacterium i = 1, 2, 

…, S, and compute the cost using fitness function J(i, j, k). 
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3 Sort the costs in ascending order and select the minimum 
one as best so far. 

4 Elimination-dispersal counter: ell = ell + 1. 
5 Reproduction counter: k = k + 1. 
6 Chemotactic counter: j = j + 1. 
 a Take the chemotactic part for ith bacterium, i = 1, 2, 

…, S as follows. 
 b Apply mutation on each bacterium ith. 
 c Compute the objective function J(i, j, k). 
 d Sort the costs in ascending order and replace the 

minimum cost with the best so far if that is smaller. 
 e Go to b if (i + 1) ≠ S. 
 f Get the minimum cost so far. 
 g Go to step 6 if j + 1 < Nc. 
7 Sort bacteria cost in descending order and remove the 

second half of the population and duplicate the first half in 
order to keep the population constant. Go to step 5 if  
k + 1 < Nre. 

8 Regenerate random permutation for all bacteria based on a 
random probability value Ped. 

9 Get minimum cost and replace with the best so far if that 
is smaller. 

10 Apply Tabu search algorithm on the permutation related to 
best so far cost. Compute the cost of new permutation and 
replace with best so far, if that is smaller. Go to step 4 if 
ell + 1 < Ned. 

In step 3, the minimum cost through all solutions is set as 
best so far. In steps 4, 5, and 6 the chemotactic, 
reproduction, and elimination and dispersal parts are started, 
respectively. In step 6, the chemotactic part takes place, 
where we added swap mutation to update the permutations. 
We compute the cost using QAP fitness function 
(Koopmans and Beckmann, 1957) again for all updated 
permutations, and we substitute the minimum cost if that is 
less than best so far. In step 7, all permutations are sorted in 
ascending order based on their cost and the first half of the 
solutions are substituted into second half. We always use an 
even number of bacteria (Table 1) to keep the population 
constant. In step 8, we generate a random number between 0 
and 1, and if the generated random number is bigger than 
Ped (0.25), step 2 will be repeated here, otherwise the 
algorithm continues to step 9 with previous solutions. In 
step 9 we find the minimum cost among the permutation 
costs and if it is smaller than best so far then it will be 
replaced. In step 10, where we applied Tabu search 
algorithm, the best so far solution gets optimised with Tabu 
search algorithm and substitutes with the old solution if that 
is better, and it goes to step 4. 

3.2 Multi-objective BFO 
Unlike single objective BFO that is designed for single 
objective optimisation problems, MOBFO is designed for 
multi-objective optimisation problems. The proposed single 
objective BFO described in previous section and finds a 
single optimum solution in QAP, whereas the proposed 

MOBFO finds a non-dominated set solutions. In  
multi-objective optimisation problems, solution a is better 
than solution b if and only if solution a dominates solution 
b. Deb et al. (2002) introduced fast non-dominated sort 
method to compare different solutions in the multi-objective 
optimisation problems and find the best non-dominated set 
solutions. Briefly, a fast non-dominated sort method goes 
through each solution ith and computes the number of 
solutions that dominate ith solution and save them in a list. 
The final list is number of dominated solutions per each 
solution ith. Eventually, the algorithm sorts the list in 
ascending order and selects those solutions that have zero 
rank and print them as a non-dominated set solutions or 
Pareto front solutions. We use fast non-dominated sort 
method for the solution of mQAP that is a minimisation 
problem, although there are other non-dominated sort 
algorithms that are used to find the maximised solutions set 
(Srinivas and Deb, 1994; Ghosh and Das, 2008; Yazdi et al., 
2017). 

Like proposed single objective BFO, we added a swap 
mutation operator into chemotactic part and improved the 
final solution using local Tabu search algorithm. 
Additionally, we added one crossover operator into 
chemotactic part in order to update the non-dominated set 
solutions. Crossover is one of the main operators in GA that 
randomly exchanges some elements in the parent 
chromosomes and generates the new offspring in the next 
generation. There are many kinds of crossover methods that 
can be used to update the population, but a few of them can 
be used for permutation style population (Misevicius and 
Kilda, 2005). 

Thus, we investigated these kinds of crossover by 
evaluating the results of each and turns out that ULX (Tate 
and Smith, 1995; Misevicius and Kilda, 2005) can be the 
best one among them. 

Algorithm 2 

1 Parameter initialisation: 
 p, S, Nc, Ns, Nre, Ned, Sr, Ped 
 p dimension of search space 
 S population of bacteria 
 Nc chemotactic parts for each bacterium 
 Nre reproduction part 
 Ned elimination dispersal part 
 Sr = S/2 bacteria split 
 Ped probability of elimination-dispersal 
 M number of fitness functions. 
2 Generate random permutation for each bacterium i = 1, 2, 

…, S, and compute the cost using fitness function Jb(i, j, k), 
where b is number of fitness functions, b = 1, 2, …, M. 

3 Get non-dominated set solutions using fast non-dominated 
sort algorithm. 

4 Elimination-dispersal counter: ell = ell + 1. 
5 Reproduction counter: k = k + 1. 
6 Chemotactic counter: j = j + 1. 
 a Take the chemotactic part for ith bacterium, i = 1, 2, …, 
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S as follows: 
 b Apply crossover and mutation on each bacterium ith. 
 c Compute the fitness function Jb(i, j, k). 
 d Get the non-dominated set solutions again. 
 e Go to b if (i + 1) ≠ S. 
 f Store all non-dominated solutions in each iteration here 

these are basis for non-dominated set solutions. 
 g Let bacteria with better rank continue for next iteration. 

Go to step 6 if j + 1 < Nc. 
7 Sort the solutions in descending order using fast  

non-dominated sort algorithm and remove the second half 
of the population and duplicate the first half in order to 
keep the population constant. Go to step 5 if k + 1 < Nre. 

8 Regenerate random permutation for all bacteria based on a 
random probability value Ped. 

9 Get non-dominated set solutions. Apply multi-objective 
Tabu search algorithm on final non-dominated set 
solutions. Compute the fitness functions of new solutions 
and replace with old non-dominated set solutions, if new 
ones are better. Go to step 4 if ell + 1 < Ned. 

Briefly, the ULX compares two permutations A and B and 
copies the common elements into a new solution 
(permutation). For the rest of the uncommon elements, it 
starts with first element of permutation A and copies into 
new permutation, then switch on the permutation B and 
copies the first uncommon element to the next empty 
location in the new permutation if there is no repeated 
element in the new permutation, otherwise switches to other 
uncommon element in another permutation. This process 
continues for all uncommon elements in the permutations A 
and B to fill out the new permutation empty locations. Note, 
if all of the uncommon elements of both permutations have 
been visited and still some of the locations remains empty in 

the new permutation, then a random unduplicated number 
will be generated to fill out any empty location. In modified 
MOBFO, after inserting common element of permutation A 
and B into a new permutation list, we generated a random 
number between [0, 1], and if the random number is greater 
than 0.5, we begin copying of elements from permutation A, 
otherwise we begin with permutation B. 

The proposed MOBFO is given in Algorithm 2 and 
consists of ten steps. The steps of the algorithm are similar 
to the proposed single objective BFO (Algorithm 1), though 
at some points it is designed for multi-objective 
optimisation and we describe them here. In step 1, there is 
an additional variable M, that shows the number of 
objective functions under study. In step 2, a random 
permutation is created for each bacterium and MOBFO 
computes M objective functions for each bacterium. In  
step 3, a non-dominated set solutions are computed using 
fast non-dominated sort algorithm. In step 6, in addition to 
swap mutation, ULX is applied to update the solutions and 
step 3 is repeated. In step 9, step 3 is repeated again to 
update non-dominated set, and Tabu search algorithm is 
applied on the final non-dominated set to optimise the 
solutions locally, and it goes to step 4. 

4 Experimental results 
We were assessed the performance of the proposed single 
objective BFO algorithm using the instances from the  
well-known QAPLIB website (Burkard et al., 1997). We ran 
experimental analyses on a P4 Laptop with 1.0 GB RAM 
and 2.7 GHz Intel CPU. The operating system was 
Windows 7 and the developing software was MATLAB 
2013a. 

Table 2 List of the name, size, and cost of instances obtained from QAPLIB 

Name Size Cost Prop. BFO Orig. BFO GA 

chr12a 12 9,552 0.10 0.64 NA 
chr15a 15 9,896 0.12 0.86 NA 
chr18a 18 11,098 0.30 1.01 NA 
chr20a 20 2,192 0.18 1.04 NA 
chr22a 22 6,156 0.07 0.51 NA 
chr25a 25 3,796 0.40 1.17 NA 
esc16a 16 68 0.00 0.32 2.94 
esc16h 16 996 0.00 0.10 0.00 
esc32a 32 130 0.20 0.89 NA 
esc32e 32 2 0.00 4.00 0.00 
esc32f 32 2 0.00 6.00 0.00 
esc64a 64 116 0.00 0.55 NA 
esc128 128 64 0.00 2.94 NA 
had12 12 1,652 0.00 0.08 0.00 
had14 14 2,724 0.00 0.09 0.07 

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO  
(orig. BFO), and GA algorithms. NA indicates not available. 



 A modified single and MOBFO for the solution of QAP 7 

Table 2 List of the name, size, and cost of instances obtained from QAPLIB (continued) 

Name Size Cost Prop. BFO Orig. BFO GA 

had16 16 3,720 0.00 0.07 0.91 
had18 18 5,358 0.00 0.06 1.12 
had20 20 6,922 0.00 0.06 1.61 
kra30a 30 88,900 0.05 0.30 NA 
lipa20a 20 3,683 0.00 0.05 NA 
lipa20b 20 27,076 0.00 0.26 NA 
lipa30a 30 13,178 0.01 0.04 3.19 
lipa40a 40 31,538 0.01 0.03 NA 
lipa50a 50 1,210,244 0.00 0.26 2.27 
lipa60a 60 107,218 0.00 0.02 2.09 
lipa70a 70 169,755 0.00 0.02 1.81 
lipa80a 80 253,195 0.00 0.02 1.65 
lipa90a 90 360,630 0.00 0.02 1.53 
nug12 12 578 0.01 0.17 NA 
nug14 14 1,014 0.10 0.14 NA 
nug15 15 1,150 0.00 0.17 NA 
nug16a 16 1,610 0.01 0.17 NA 
nug17 17 1,732 0.01 0.17 NA 
nug18 18 1,930 0.00 0.17 7.56 
nug20 20 2,570 0.00 0.20 NA 
nug21 21 2,438 0.00 0.24 NA 
nug22 22 3,596 0.01 0.18 NA 
nug24 24 3,488 0.00 0.20 NA 
nug25 25 3,744 0.00 0.20 NA 
nug27 27 5,234 0.01 0.23 NA 
nug28 28 5,166 0.01 0.23 NA 
nug30 30 6,124 0.00 0.20 NA 
rou12 12 235,528 0.02 0.12 NA 
rou15 15 354,210 0.03 0.17 NA 
rou20 20 725,522 0.00 0.15 NA 
scr12 12 31,410 0.00 0.28 NA 
scr15 15 51,140 0.04 0.34 NA 
scr20 20 110,030 0.00 0.75 NA 
sko42 42 15,812 0.00 0.18 NA 
sko49 49 23,386 0.01 0.17 NA 
sko56 56 34,458 0.01 0.18 NA 
sko64 64 48,498 0.01 0.16 NA 
sko72 72 66,256 0.02 0.16 NA 
sko81 81 90,998 0.01 0.14 NA 
sko90 90 115,534 0.00 0.15 NA 
sko100a 100 152,002 0.01 0.14 NA 
ste36a 36 9,526 0.08 0.61 NA 
tai12a 12 224,416 0.01 0.18 NA 
tai15a 15 388,214 0.02 0.14 NA 
tai17a 17 491,812 0.02 0.15 NA 

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO  
(orig. BFO), and GA algorithms. NA indicates not available. 
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Table 2 List of the name, size, and cost of instances obtained from QAPLIB (continued) 

Name Size Cost Prop. BFO Orig. BFO GA 

tai20a 20 703,482 0.01 0.14 NA 
tai25a 25 1,167,256 0.02 0.14 9.84 
tai30a 30 1,818,146 0.03 0.16 NA 
tai35a 35 2,422,002 0.03 0.15 NA 
tai40a 40 3,139,370 0.02 0.14 NA 
tai50a 50 4,938,796 0.03 0.14 NA 
tai60a 60 7,205,962 0.02 0.14 NA 
tai64c 64 1,855,928 0.00 0.17 5.31 
tai80a 80 13,499,184 0.03 0.13 11.44 
tai100a 100 21,052,466 0.02 0.12 11.02 
tai150b 150 498,896,643 0.03 0.23 NA 
tai256c 256 44,759,294 0.00 0.12 NA 
tho30 30 149,936 0.04 0.21 NA 
tho40 40 240,516 0.02 0.28 NA 
tho150 150 8,133,398 0.02 0.16 NA 
wil50 50 48,816 0.00 0.10 7.65 
wil100 100 273,038 0.00 0.08 NA 

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO  
(orig. BFO), and GA algorithms. NA indicates not available. 

 
Table 2 shows the comparison of the proposed BFO, 
original BFO, and GA (Tosun, 2014) on QAPLIB instances. 
The comparison is based on the percentage gap between the 
solution found and optimum solution reported in QAPLIB. 
In this table, the first column is the name of instances, the 
second column is the size of instances, third column is the 
best solution found using the proposed BFO algorithm, and 
last three columns are the percentage gap of the proposed 
BFO, original BFO, and GA, respectively. The comparison 
of the results indicates that the proposed BFO found the 
optimum solution in most of the instances and outperforms 
the results of original BFO and GA. These instances 
selected among more than 100 instances in QAPLIB to test 
the performance of the proposed algorithm with different 
problem size (12–256). 

Indeed, we have not compared the time-consumption 
between different approaches because of the fact that GA 
approach ran on different platforms. Instead we compare the 
ultimate results to prove that the proposed method can 
found good solution regardless of size and time. There are 
many other studies that have been shown the  
time-consumption, but in order to compare the time we had 
to implement the different approaches and ran on the same 
machine. This might be one of the pitfalls of this paper and 
we leave this for future research. 

We were assessed the performance of the proposed 
MOBFO using 22 mQAP instances (Knowles and Corne, 
2003). The experimental analyses environment as well as 
parameters initialisation were the same as the proposed 
BFO algorithm according to Table 1. 

Table 3 shows the list of 22 mQAP instances with their 
size and number of objectives. All of the instances are based 

on two objectives with different sizes (10–50) and 
categories (read-like and uniform). We have not assessed 
the proposed MOBFO on three dimensional problems and 
leave this part for future research. 

Table 3 List of mQAP instances 

Instance name Category Size Objective 
KC10-2fl-1rl Real-like 10 2 
KC10-2fl-2rl Real-like 10 2 
KC10-2fl-3rl Real-like 10 2 
KC10-2fl-4rl Real-like 10 2 
KC10-2fl-5rl Real-like 10 2 
KC20-2fl-1rl Real-like 20 2 
KC20-2fl-2rl Real-like 20 2 
KC20-2fl-3rl Real-like 20 2 
KC20-2fl-4rl Real-like 20 2 
KC20-2fl-5rl Real-like 20 2 
KC50-2fl-1rl Real-like 50 2 
KC50-2fl-2rl Real-like 50 2 
KC50-2fl-3rl Real-like 50 2 
KC10-2fl-1uni Uniform 10 2 
KC10-2fl-2uni Uniform 10 2 
KC10-2fl-3uni Uniform 10 2 
KC20-2fl-1uni Uniform 20 2 
KC20-2fl-2uni Uniform 20 2 
KC20-2fl-3uni Uniform 20 2 
KC50-2fl-1uni Uniform 50 2 
KC50-2fl-2uni Uniform 50  
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We also evaluated the performance of the proposed 
MOBFO using three assessment metrics, average 
generational distance (GD), convergence measure (CM), 
and divergence measure (DM) (Mostaghim and Teich, 
2004; Okabe et al., 2003). GD reports how far, in average, 
known Pareto front is from true Pareto front. In other words, 
GD metric evaluates the average distance between the  
non-dominated set solutions (E) and optimum Pareto front 
(P*). GD can be defined as: 

( ) { }* *1, min ( , )
u E

GD E P dist u v v P
E ∈

= ∈  (4) 

where dist(u, v) is the Euclidean distance in objective space 
between the solution u ∈ E and the nearest member in the 
optimum Pareto front (v ∈ P*). Indeed, this metric measures 
how far the approximation front is from the optimum Pareto 
front. Note, the smaller value of GD represents a better 
performance. 

CM evaluates average similarity of non-dominated 
solutions and Pareto front solutions. CM can be defined as: 

1

1

1 ( ) ( , )
m n

j k

pf n nds m n

CM
pf

=

+ −

=


 (5) 

where pf is Pareto optimum vector, nds is non-dominated 
set solutions, m is size of non-dominated set vector, and n is 
number of objectives. Note, the bigger the CM, the better 
the result. 

DM evaluates the spread distribution of vectors 
throughout the non-dominated set solutions and can be 
defined as: 

( )
1

2

1

1
1

nds

pf nds i
i

DM d d d d
nds

−

=

= + + −
−   (6) 

where di is the Euclidean distance between non-dominated 
set solutions, i is the number of non-dominated set 
solutions, dpf and dnds are the Pareto optimum vector and 
non-dominated set solutions. DM is expected to be better as 
the search area is wider, rather than single point, so the 
bigger the DM value, the better the result (Lim et al., 2014). 

Consequently, we compared the results of these metrics 
(GD, CM, and DM) between proposed MOBFO and four 
well-known EA approaches: mGRASP/MH (Zinflou et al., 
2013), fuzzy PSO (Zhao et al., 2008), NSGAII (Deb et al., 
2002), and original MOBFO (Niu et al., 2013). Table 4 
shows the performance of assessment metrics obtained by 
each algorithm for the 22 mQAP instances. 
 

Table 4 Average GD, CM, and DM values for mGRASP/MH, fuzzy PSO, NSGAII, original MOBFO, and proposed MOBFO 

Instance name Metric mGRASP/MH Fuzzy PSO NSGAII Original MOBFO Proposed MOBFO 

KC10-2fl-1rl GD 6.0364e+04 0 0 3.6304e+04 0 
CM 0.0173 0.2242 1 0.0865 1 
DM 0.2069 0.2241 1 0.3103 1 

KC10-2fl-2rl GD 7.7505e+04 0 0 0 0 
CM 0.0667 0.2667 1 0.6668 1 
DM 0.3333 0.2667 1 0.6667 1 

KC10-2fl-3rl GD 6.5790e+04 0 0 2.0828e+04 0 
CM 1.0486e-05 0.1455 1 0.1092 1 
DM 0.0909 0.1455 1 0.2545 1 

KC10-2fl-4rl GD 1.0145e+04 0 0 2.2742e+03 0 
CM 0.3435 0.2283 1 0.2492 1 
DM 0.4340 0.2264 1 0.3208 1 

KC10-2fl-5rl GD 3.7627e+04 NA 0 0 7.8350e+04 
CM 0.2858 NA 1 0.2042 1 
DM 0.4490 NA 1 0.3061 1 

KC20-2fl-1rl GD 1.0004e+06 NA 8.6505e+04 3.3506e+05 1.4131e+03 
CM 1.1602e-05 NA 7.8179e-05 4.0738e-05 0.9140 
DM 0.1290 NA 0.4194 0.1398 0.9570 

KC20-2fl-2rl GD 5.2403e+06 NA 2.5075e+06 4.8649e+06 1.4435e+06 
CM 1.1227e-05 NA 1.0746e-04 1.8974e-05 0.5366 
DM 0.0909 NA 0.2455 0.0818 0.7909 

Notes: First and second columns are the name of instances and metrics, and the rest of the columns compare the performance of 
algorithms. NA indicates not available. 
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Table 4 Average GD, CM, and DM values for mGRASP/MH, fuzzy PSO, NSGAII, original MOBFO, and proposed MOBFO 
(continued) 

Instance name Metric mGRASP/MH Fuzzy PSO NSGAII Original MOBFO Proposed MOBFO 
KC20-2fl-3rl GD 1.0763e+05 NA 4.1562e+04 4.0651e+06 7.9226e+03 

CM 2.0048e-05 NA 1.6249e-04 1.0101e-05 0.2711 
DM 0.0714 NA 0.3878 0.0408 0.5459 

KC20-2fl-4rl GD 9.4466e+05 NA 3.1785e+05 1.4372e+06 9.7568e+04 
CM 7.8523e-06 NA 0.0137 6.0072e-06 0.2467 
DM 0.1644 NA 0.4658 0.1096 0.6438 

KC20-2fl-5rl GD 7.8927e+05 NA 2.3552e+05 1.0829e+06 8.1897e+04 
CM 4.2539e-06 NA 3.3240e-05 1.9945e-06 0.0807 
DM 0.1129 NA 0.3952 0.0645 0.5000 

KC50-2fl-1rl GD NA NA NA 1.8848e+06 2.4066e+04 
CM NA NA NA 2.7198e-07 2.4554e-04 
DM NA NA NA 0.0139 0.5278 

KC50-2fl-2rl GD NA NA NA 2.1147e+06 3.5228e+04 
CM NA NA NA 6.3955e-08 1.6289e-04 
DM NA NA NA 0.0100 0.5116 

KC50-2fl-3rl GD NA NA NA 1.2676e+06 2.7726e+04 
CM NA NA NA 9.5983e-07 1.7589e-04 
DM NA NA NA 0.0156 0.4630 

KC10-2fl-1uni GD 2.3550e+03 0 0 6.2979e+03 0 
CM 0.1554 1 1 0.0015 1 
DM 0.4615 1 1 0.4615 1 

KC10-2fl-2uni GD 8.5809e+03 0 0 0 0 
CM 1.2117e-04 1 1 1 1 
DM 1 1 1 1 1 

KC10-2fl-3uni GD 462.0308 0 0 427.8507 0 
CM 0.0488 1 1 0.0104 1 
DM 0.2077 1 1 0.1923 1 

KC20-2fl-1uni GD 1.4341e+04 NA 3.0844e+03 1.1162e+04 699.2820 
CM 9.6647e-04 NA 0.0026 8.2174e-04 0.5472 
DM 0.1818 NA 0.4727 0.1273 0.7455 

KC20-2fl-2uni GD 5.3530e+05 NA 5.2399e+05 8.5236e+05 3.4735e+05 
CM 1.6519e-04 NA 7.8772e-04 7.4803e-06 0.0059 
DM 0.3750 NA 0.5000 0.1250 0.7500 

KC20-2fl-3uni GD 2.1538e+03 NA 1.1816e+03 5.3478e+03 155.1058 
CM 1.8263e-07 NA 1.8208e-07 1.7929e-07 1.8413e-07 
DM 0.0051 NA 0.0051 0.0102 0.0051 

KC50-2fl-1uni GD NA NA NA 7.5229e+04 2.3338e+03 
CM NA NA NA 1.0256e-05 7.7719e-04 
DM NA NA NA 0.0471 0.5294 

KC50-2fl-2uni GD NA NA NA 2.2387e+05 6.0161e+03 
CM NA NA NA 1.5426e-06 2.9983e-04 
DM NA NA NA 0.0588 0.4118 

KC50-2fl-3uni GD NA NA NA 2.3057e+04 417.7430 
CM NA NA NA 1.0802e-04 0.0035 
DM NA NA NA 0.0378 0.5689 

Notes: First and second columns are the name of instances and metrics, and the rest of the columns compare the performance of 
algorithms. NA indicates not available. 
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The first column is the instance name, the second column is 
the evaluation metric name, and the rest of the columns 
indicate the results for each algorithm. Based on the results, 
the proposed MOBFO performed better than other 
algorithms in terms of the average GD, CM, and DM 
values. Other methods have either large GD value or small 
CM and DM values. 

Figure 1 Comparison results of five algorithms, proposed 
MOBFO, original BFO, mGRASP/MH, fuzzy PSO, 
NSGA2, and Pareto front (see online version  
for colours) 

 

 
Notes: In this figure KC10/KC20 related to problem 

size, and 2fl is related to number of objective 
functions. Also, rl/uni related to type of the 
problem whether is real (rl) or uniform (uni). 

Additionally, we illustrated the graphical performance 
comparison of these five algorithms including optimum 
Pareto front for two instances from Table 4 (Figure 1). 
Although, the proposed MOBFO outperforms NSGAII,  
 

Fuzzy PSO, mGRASP/MH, and original MOBFO, but in 
very rare cases the approximation sets found by the 
proposed MOBFO are very close to Pareto optimum 
solutions. For the future direction, this algorithm can 
resolved hyper-parameter optimisation for machine learning 
algorithm (Parvandeh and McKinney, 2018; Parvandeh  
et al., 2019, 2020). Additionally, we can improve the 
document summarisation when we use cosine similarity to 
find the optimised summary from multi-document in natural 
language processing problems (Parvandeh et al., 2016). 

5 Conclusions 
In this paper, we proposed modified BFO and MOBFO 
algorithms for the solution of QAP and mQAP instances. 
The proposed BFO algorithm updates the solution using the 
swap mutation method in chemotactic part and improves the 
final solution using local Tabu search algorithm to reach 
local optimum. And, the proposed MOBFO attempts to find 
a non-dominated set solutions to be as close as possible to 
Pareto front solutions. MOBFO determines the  
non-dominated set solutions using fast non-dominated sort 
method and updates solutions set using swap mutation and 
ULX operation. Additionally, the final non-dominated set 
solutions improves using multi-objective version of local 
Tabu search to reach the local optimum. We assessed the 
proposed BFO and MOBFO algorithms on QAP and 22 
mQAP instances from the QAPLIB. Computational results 
showed that BFO and MOBFO performed well on these 
instances. We compared both algorithms with the number of 
state-of-the-art algorithms as well as the best-known 
solutions from QAPLIB. The comparison showed that our 
results are very close to the best-known solutions and 
outperforms the state-of-the-art algorithms. 
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