
Int. J. Bio-Inspired Computation, Vol. 17, No. 1, 2021 1

Copyright © 2021 Inderscience Enterprises Ltd.

A modified single and multi-objective bacteria
foraging optimisation for the solution of quadratic
assignment problem

Saeid Parvandeh*
Department of Computer Science,
University of Tulsa,
Tulsa, OK, USA
Email: saeid-parvandeh@utulsa.edu
and
Department of Molecular and Human Genetics,
Baylor College of Medicine,
Houston, TX, USA
Email: saeid.parvandeh@bcm.edu
*Corresponding author

Mohammadreza Boroomand
Department of Management,
University of Akdeniz,
Antalya, Turkey
Email: m_boroomand70@gmail.com

Fahimeh Boroumand and Pariya Soltani
Department of Computer Engineering,
Islamic Azad University of Boroujerd,
Boroujerd, Lorestan, Iran
Email: f.boroomand92@gmail.com
Email: p_soltani2011@yahoo.com

Abstract: Non-polynomial hard (NP-hard) problems are challenging due to time-constraint. The
bacteria foraging optimisation (BFO) algorithm is a metaheuristics algorithm that is used for NP-
hard problems. BFO is inspired by the behaviour of the bacteria foraging such as E. coli. The aim
of BFO is to eliminate weak foraging properties bacteria and maintain breakthrough foraging
properties bacteria toward the optimum. However, reaching to optimal solutions are time-
demanding. In this paper, we modified single objective and multi-objective BFO (MOBFO) by
adding mutation and crossover from genetic algorithm operators to update the solutions in each
generation, and local tabu search algorithm to reach the local optimum solution. Additionally, we
used fast non-dominated sort algorithm in MOBFO to find the best non-dominated solutions. We
evaluated the performance of the proposed algorithms with quadratic assignment problem
instances. The experimental results show that our approaches outperform some previous
optimisation algorithms in both convergent and divergent aspects.

Keywords: bacteria foraging optimisation; multi-objective optimisation; NSGA-II; local tabu
search; quadratic assignment problem; QAP; non-dominated sort algorithm.

Reference to this paper should be made as follows: Parvandeh, S., Boroomand, M.,
Boroumand, F. and Soltani, P. (2021) ‘A modified single and multi-objective bacteria foraging
optimisation for the solution of quadratic assignment problem’, Int. J. Bio-Inspired Computation,
Vol. 17, No. 1, pp.1–13.

Biographical notes: Saeid Parvandeh is Postdoctoral Research Fellow in Department of
Molecular and Human Genetics, Baylor College of Medicine, USA. He received his PhD in
Department of Computer Science from University of Tulsa, USA. His research interests are
machine learning, bioinformatics, natural language processing, and evolutionary optimisation.

Mohammadreza Boroomand received his BSc in industrial management from university of
Isfahan in Iran.He received his MBA from Akdeniz University in Turkey under the aegis of the
competitive and reputable international Turkey scholarship award funded by the government of
Turkey in 2019. His research interests include consumer behaviour, digital marketing, strategic

2 S. Parvandeh et al.

marketing, brand management, tourism, operation research, supply chain management, and
optimisation.

Fahimeh Boroumand is a Lecturer in several educational institutions and high schools. She
received her BSc in Computer Engineering in the field of software from Isfahan University of
Applied Science and Technology in Iran. She received her MSc in Computer Engineering in the
field of software from Islamic Azad university of Borujerd in 2015. Her interest field centred
around computer software applications.

Pariya Soltani received her BSc in Computer Engineering in the field of software from Islamic
Azad University of Mahshar in Iran. She received her MSc in Computer Engineering in the field
of software from Islamic Azad university of Borujerd in 2016. Her interest fields include
computer software applications.

1 Introduction
The goal of optimisation process is to find the optimal
solution with minimum cost for non-deterministic
polynomial hard (NP-hard) problems (Alothaimeen and
Arditi, 2019; Gunantara, 2018). Basically, there are two
types of NP-hard problems, single objective and
multi-objective optimisation (Deb, 2004). Evolutionary
algorithm (EA) is considered as an effective method to find
optimal solutions for such problems (Ojha et al., 2019;
Emmerich and Deutz, 2018). And, there are many state-of-
the-art evolutionary computation algorithms that have been
used to solve the combinatorial optimisation problems such
as
non-dominated sorting genetic algorithm II (NSGA-II) (Deb
et al., 2002), Strength Pareto Evolutionary
Algorithm Version 2 (SPEA2) (Zitzler and Thiele, 1999),
multi-objective evolutionary algorithm based on
decomposition (MOEA/D) (Zhang and Li, 2007), and
Pareto-Archived Evolution Strategy (PAES) (Knowles and
Corne, 2000). Recently, Li and Wang (2017) improved
cuckoo search algorithm by adding combination of the
learning-evolve thought with Gaussian distribution to
improve the convergence velocity and optimisation
accuracy in unconstrained function optimisation problems.
Wang and Zhang (2016) improved artificial bee colony
algorithm by updating a new search equation for onlooker
bees, where optimal and suboptimal solutions were
considered in iteration process, and an opposition-based
method applied to initial and final solution to enhance the
global convergence. Wang and Song (2017) combined
chaotic mapping strategy and the biogeography-based
optimisation optimal migration model and applied on
function optimisation problems. Luo et al. (2015) proposed
a discrete bacterial foraging optimisation (DBFO) based on
the idea of bacteria foraging optimisation (BFO) algorithm.
They applied binary encoding to solve both discrete and
continuous optimisation problems and rotation step to
update velocities of bacteria. Then, they evaluated the
efficiency of algorithm through three classical benchmark
functions and spectrum allocation problem of cognitive
radio. Cui et al. (2019, 2020) applied a modified particle
swarm optimisation (PSO) and pigeon-inspired optimisation

(PIO) to solve many-objective optimisation problems. Yi
et al. (2016) applied multi-objective BFO (MOBFO) on
aluminium electrolysis production process to find the
optimal solutions. They used PAEA approach and adaptive
foraging strategy (AFS) to balance convergence and
diversity of Pareto front. Zhao et al. (2016) proposed a
novel BFO to solve the permutation flow-shop scheduling
problem (PFSP), that is a typical combinatorial NP-hard
problem with discrete solution space. They showed that
convergent speeds and entrapment in the local optimum that
were incurred by original BFO can be handled by
combining a differential evolution operator and a chaotic
search operator in chemotactic part of BFO algorithm.
Darvishi et al. (2014) used MOBFO to solve the optimal
power flow (OPF), that is a multi-objective NP-hard
problem. They proposed a new BFO algorithm by
embedding the fuzzy strategy to original BFO to eliminate
the problem of choosing the penalty factors for constraints
and behave them just like objective function. Most of the
proposed methods modified either chemotactic part or
elimination-dispersal part of BFO algorithm for the single
or multi-objective problems.

Quadratic assignment problem (QAP) (Koopmans and
Beckmann, 1957) and multi-objective QAP (mQAP)
(Knowles and Corne, 2003) are the NP-hard problems so
that the solutions for them cannot be found in polynomial
time. Thus, there should be an optimisation algorithm to
solve such NP-hard problems. Recently, many EAs have
been used for the solution of QAP and mQAP. Tosun
(2014) used genetic algorithm (GA) (Tosun et al., 2013) to
solve single objective QAP. He proposed a new
recombination of operator based on order-1 crossover
algorithm and used quick sort algorithm to generate
different chromosomes partitions. (Benlic and Hao, 2015)
proposed a population-based memetic algorithm (BMA) for
the solution of single objective QAP. They used an effective
local optimisation algorithm breakout local search (BLS)
(Benlic and Hao, 2013) within the evolutionary computing
framework for improvement of the results. Zinflou et al.
(2013) used genetic immune strategy (GISMOO) for the
solution of mQAP. GISMOO is hybrid between GA and
artificial immune system (AIS) to find the solutions in

 A modified single and MOBFO for the solution of QAP 3

mQAP. The updating part of this algorithm is classical GA
operators and AIS cloning selection principle. Michalak
(2016) proposed a new local search method that utilises the
knowledge concerning promising search directions and can
be used as a general framework and combined with an EA
for the solution of mQAP and travelling salesman problem
(TSP). Shukla (2015) used bat algorithm for the solution of
QAP. They suggested that Bat algorithm cannot be directly
used for solving discrete search space problem like QAP,
thus they used smallest position value (SPV) a heuristic rule
to enable the bat algorithm for the solution of QAP.

In this paper, we modified BFO for single objective
problems and MOBFO for multi-objective problems. For
single objective BFO, we added swap mutation into
chemotactic part to avoid the repeated permutations and
local Tabu search algorithm (Tabitha et al., 2009) to the end
of the algorithm in order to optimise the cost of final
permutation and avoid the local optimum. For MOBFO, we
added swap mutation and uniform-like crossover (ULX)
operators (Tosun, 2014; Tosun et al., 2013) in chemotactic
part and local tabu search algorithm to the end of the
algorithm. Additionally, we used fast non-dominated sort
method (Deb et al., 2002) into elimination and dispersal
part of the MOBFO algorithm to optimise obtained
non-dominated set solutions in each iteration. We applied
modified BFO and MOBFO on QAP and mQAP problems,
respectively. Our contributions for this paper are: first, we
modified BFO and MOBFO algorithms for the purpose of
single and multi-objective problems. Second, regardless of
the problem size, these algorithms can find compatible
solutions for both QAP and mQAP. Third, however the
optimum solutions may not be found eventually, but the
experimental results show that the average percentage gap
of the solutions for QAP are lower than state-of-the-arts
algorithm and the non-dominated solutions for mQAP are
very close to Pareto front.

2 Bacteria foraging optimisation
BFO algorithm is one of the bio-inspired optimisation
algorithms that is inspired from the biomimicry of the
E. coli bacteria. BFO introduced by Passino (2002, 2010)
and its concept is to eliminate the bacteria that have the
weak foraging properties and maintain the bacteria that have
breakthrough foraging properties toward the nutrient
collection or maximise the energy per unit time. Each
bacterium communicates with other bacteria by sending the
signals, and bacteria move to the next step for collecting
nutrient if previous factors have been satisfied. Initially,
BFO introduced to make a bridge between microbiology
and engineering, and mimics some properties of the bacteria
foraging such as chemotactic, reproduction, and quorum
sensing, but later in 2010, he investigated and compared
BFO with other optimisation algorithms (Passino, 2010).
Basically, BFO consists of four principal parts: chemotactic,
swarming, reproduction, elimination and dispersal (Das
et al., 2009), and a brief introduction of each part is given as
follows:

2.1 Chemotactic
In biology, the chemotactic is a process of bacteria
movement for gaining the nutrient. One of the E. coli
bacterium properties is that, it can move in two diverse
ways, swimming and tumbling. In swimming, the bacterium
swims in the same direction to search for nutrient, and in
tumbling, bacterium changes the direction to another
direction. Assume θi(j, k, l) shows the current position of ith
bacterium, jth chemotactic step, kth reproduction step, and lth
elimination and dispersal step, then the position of
bacterium in the next chemotactic step by tumbling will be
as:

()(1, ,) (, ,) ()
() ()

i i
T

iθ j k l θ j k l C i
i i

Δ+ = +
Δ Δ

 (1)

where C(i) shows the number of steps in the random
direction that is specified by the tumbling of ith bacterium
and Δ(i) indicates a vector of random directions in
population size with continuous values between [–1, 1].

2.2 Swarm
A group of E. coli bacteria arrange themselves in travelling
ring by moving toward the nutrient collection. When the
cells stimulated by a high level of succinate, release an
attractant aspartate, such that the cells aggregate into groups
and move as concentric patterns of swarms with high
bacteria density. The cell-to-cell signalling in E. coli swarm
can be represented as following function:

()() ()()

()

()

1

2

1 1

2

1 1

, , , , , ,

exp

exp

S
i

cc cc
i

S P
i

attract attract m m
i m

S P
i

repelent repelent m m
i m

J θ P j k l J θ θ j k l

d w θ θ

d w θ θ

=

= =

= =

=

  
= − − −      

  
= − − −      



 

 

 (2)

where Jcc(θ, P(j, k, l)) shows objective function cost and in
each step the amount of this objective function is added to
the main cost (where the total cost to be minimised). In
other words, Jcc shows how far a bacterium is from the
fittest bacterium. θ is the position of p-dimensional search
space of ith bacterium, jth chemotactic step, kth reproduction
step, and lth elimination-dispersal step, P is number of
variables to be optimised in each bacterium i, S is the total
number of bacteria, and dattract, wattract, hrepellent, wrepellent are
the diversity coefficients (constant values) (Das et al.,
2009).

2.3 Reproduction
After chemotactic and swarming parts got completed, some
of the bacteria have enough nutrient and some others not. In
the reproduction part, those bacteria that have enough
nutrient will be reproduced and others will be eliminated.
To do so, a health status of each bacterium is calculated.

4 S. Parvandeh et al.

The health status is the sum of step fitness during its life and
can be defined as:

1

(, , ,)
cN

i
health

j

J J i j k l
=

= (3)

where Nc is total number of chemotactic steps, and Jhealth is
calculated for ith bacterium, jth chemotactic step, kth
reproduction step, and lth elimination and dispersal step.
Eventually, the health status of all bacteria will be sorted in
ascending order and the first half of the bacteria reproduce
and surrogate into second half of the bacteria based on their
top health status. In other words, the smaller Jhealth values
related to healthier bacteria. Thus, bacteria with smaller
health values have more chance to survive. This process not
only keeps the population constant, but also the healthier
bacteria continue to next generation.

2.4 Elimination and dispersal
When the density of bacteria getting high in a small area,
the temperature of this area getting high and may not be
enough nutrient for all bacteria as well. Thus, in this part,
the population of bacteria may randomly change their
positions to avoid these flaws. Elimination and dispersal
event relocates the bacteria in different environments to
avoid the bacteria death and local optimum solution(s).

In single objective BFO, the aim is to find one single
solution, whereas the aim of the MOBFO is to obtain a set
of non-dominated solutions to be closed to optimum Pareto
front. Thus, Niu et al. (2013) described MOBFO approach
to solve multi-objective optimisation problems. The idea of
integration between bacteria health sorting and Pareto front
mechanism are developed to search for non-dominated set
solutions of multi-objective problems. Consequently, BFO
algorithm can be used for single objective problems and
multi-objective problems.

3 Proposed method
QAP is one of discrete optimisation problems that can be
introduced in two different ways: single objective QAP and
mQAP. First, we describe the proposed single objective
BFO algorithm for the solution of single objective QAP,
and we continue with the proposed MOBFO for the solution
of mQAP in the next section.

3.1 Single objective BFO
We proposed a new BFO algorithm by adding swap
mutation operator into the chemotactic part and local search
algorithm at the end of algorithm to be applied to final
solution. Swap mutation (Soni and Kumar, 2014) operator is
one of the genetic operators that are used to update the
solutions in a population. Given a permutation of a QAP
solution, swap mutation selects two locations of the solution
space and exchanges them, this happens only one time for
each solution in the population and the population gets

updated for next run. In modified BFO, we generated a
random number between [0, 1] for each permutation and if
the random number is greater than 0.5, we swapped the
entities of two random locations, otherwise we divided the
permutation into three blocks and applied the swap
mutations in each block. Tabu search algorithm (Tabitha
et al., 2009) is one of the well-known local search
algorithms that searches through solution space locally and
periodically to improve the solution x to x′ around x.
Basically, Tabu search is mostly used for NP-hard problems
and it varies from other local search algorithms based on the
Tabu list. Tabu list is a typical short-term memory that
includes previously visited solutions and stores some of the
attributes of the solutions. Thus, it does not allow to revisit
the solutions so that the algorithm examines those
movements that are not in the Tabu list. Consequently, the
Tabu search algorithm is applied on final solution, and the
new solution will be replaced with old solution if it
produces a better result. The aim in the proposed single
objective BFO is to find a single permutation solution with
minimum cost in QAP and it is designed in three parts:

1 chemotactic

2 reproduction

3 elimination and dispersal.

Table 1 Initial settings for algorithm parameters and
coefficients

Variables Setting

Dimension of search space (p) 50
Number of bacteria per generation (S) 100
Chemotactic steps (Nc) 100
Reproduction steps (Nre) 4
Elimination-dispersal steps (Ned) 5
Probability for elimination-dispersal (Ped) 0.25

The proposed single objective BFO is given in Algorithm 1
and consists of ten steps. In step 1, all the variables are
initialised with preconceived constant numbers (Table 1). In
step 2, a set of permutations with p size are randomly
generated and QAP fitness function (Koopmans and
Beckmann, 1957) is computed for each permutation.

Algorithm 1

1 Parameter initialisation:
 p, S, Nc, Ns, Nre, Ned, Sr, Ped
 p dimension of search space
 S population of bacteria
 Nc chemotactic parts for each bacterium
 Nre reproduction part
 Ned elimination dispersal part
 Sr = S/2 bacteria split
 Ped probability of elimination-dispersal.
2 Generate random permutation for each bacterium i = 1, 2,

…, S, and compute the cost using fitness function J(i, j, k).

 A modified single and MOBFO for the solution of QAP 5

3 Sort the costs in ascending order and select the minimum
one as best so far.

4 Elimination-dispersal counter: ell = ell + 1.
5 Reproduction counter: k = k + 1.
6 Chemotactic counter: j = j + 1.
 a Take the chemotactic part for ith bacterium, i = 1, 2,

…, S as follows.
 b Apply mutation on each bacterium ith.
 c Compute the objective function J(i, j, k).
 d Sort the costs in ascending order and replace the

minimum cost with the best so far if that is smaller.
 e Go to b if (i + 1) ≠ S.
 f Get the minimum cost so far.
 g Go to step 6 if j + 1 < Nc.
7 Sort bacteria cost in descending order and remove the

second half of the population and duplicate the first half in
order to keep the population constant. Go to step 5 if
k + 1 < Nre.

8 Regenerate random permutation for all bacteria based on a
random probability value Ped.

9 Get minimum cost and replace with the best so far if that
is smaller.

10 Apply Tabu search algorithm on the permutation related to
best so far cost. Compute the cost of new permutation and
replace with best so far, if that is smaller. Go to step 4 if
ell + 1 < Ned.

In step 3, the minimum cost through all solutions is set as
best so far. In steps 4, 5, and 6 the chemotactic,
reproduction, and elimination and dispersal parts are started,
respectively. In step 6, the chemotactic part takes place,
where we added swap mutation to update the permutations.
We compute the cost using QAP fitness function
(Koopmans and Beckmann, 1957) again for all updated
permutations, and we substitute the minimum cost if that is
less than best so far. In step 7, all permutations are sorted in
ascending order based on their cost and the first half of the
solutions are substituted into second half. We always use an
even number of bacteria (Table 1) to keep the population
constant. In step 8, we generate a random number between 0
and 1, and if the generated random number is bigger than
Ped (0.25), step 2 will be repeated here, otherwise the
algorithm continues to step 9 with previous solutions. In
step 9 we find the minimum cost among the permutation
costs and if it is smaller than best so far then it will be
replaced. In step 10, where we applied Tabu search
algorithm, the best so far solution gets optimised with Tabu
search algorithm and substitutes with the old solution if that
is better, and it goes to step 4.

3.2 Multi-objective BFO
Unlike single objective BFO that is designed for single
objective optimisation problems, MOBFO is designed for
multi-objective optimisation problems. The proposed single
objective BFO described in previous section and finds a
single optimum solution in QAP, whereas the proposed

MOBFO finds a non-dominated set solutions. In
multi-objective optimisation problems, solution a is better
than solution b if and only if solution a dominates solution
b. Deb et al. (2002) introduced fast non-dominated sort
method to compare different solutions in the multi-objective
optimisation problems and find the best non-dominated set
solutions. Briefly, a fast non-dominated sort method goes
through each solution ith and computes the number of
solutions that dominate ith solution and save them in a list.
The final list is number of dominated solutions per each
solution ith. Eventually, the algorithm sorts the list in
ascending order and selects those solutions that have zero
rank and print them as a non-dominated set solutions or
Pareto front solutions. We use fast non-dominated sort
method for the solution of mQAP that is a minimisation
problem, although there are other non-dominated sort
algorithms that are used to find the maximised solutions set
(Srinivas and Deb, 1994; Ghosh and Das, 2008; Yazdi et al.,
2017).

Like proposed single objective BFO, we added a swap
mutation operator into chemotactic part and improved the
final solution using local Tabu search algorithm.
Additionally, we added one crossover operator into
chemotactic part in order to update the non-dominated set
solutions. Crossover is one of the main operators in GA that
randomly exchanges some elements in the parent
chromosomes and generates the new offspring in the next
generation. There are many kinds of crossover methods that
can be used to update the population, but a few of them can
be used for permutation style population (Misevicius and
Kilda, 2005).

Thus, we investigated these kinds of crossover by
evaluating the results of each and turns out that ULX (Tate
and Smith, 1995; Misevicius and Kilda, 2005) can be the
best one among them.

Algorithm 2

1 Parameter initialisation:
 p, S, Nc, Ns, Nre, Ned, Sr, Ped
 p dimension of search space
 S population of bacteria
 Nc chemotactic parts for each bacterium
 Nre reproduction part
 Ned elimination dispersal part
 Sr = S/2 bacteria split
 Ped probability of elimination-dispersal
 M number of fitness functions.
2 Generate random permutation for each bacterium i = 1, 2,

…, S, and compute the cost using fitness function Jb(i, j, k),
where b is number of fitness functions, b = 1, 2, …, M.

3 Get non-dominated set solutions using fast non-dominated
sort algorithm.

4 Elimination-dispersal counter: ell = ell + 1.
5 Reproduction counter: k = k + 1.
6 Chemotactic counter: j = j + 1.
 a Take the chemotactic part for ith bacterium, i = 1, 2, …,

6 S. Parvandeh et al.

S as follows:
 b Apply crossover and mutation on each bacterium ith.
 c Compute the fitness function Jb(i, j, k).
 d Get the non-dominated set solutions again.
 e Go to b if (i + 1) ≠ S.
 f Store all non-dominated solutions in each iteration here

these are basis for non-dominated set solutions.
 g Let bacteria with better rank continue for next iteration.

Go to step 6 if j + 1 < Nc.
7 Sort the solutions in descending order using fast

non-dominated sort algorithm and remove the second half
of the population and duplicate the first half in order to
keep the population constant. Go to step 5 if k + 1 < Nre.

8 Regenerate random permutation for all bacteria based on a
random probability value Ped.

9 Get non-dominated set solutions. Apply multi-objective
Tabu search algorithm on final non-dominated set
solutions. Compute the fitness functions of new solutions
and replace with old non-dominated set solutions, if new
ones are better. Go to step 4 if ell + 1 < Ned.

Briefly, the ULX compares two permutations A and B and
copies the common elements into a new solution
(permutation). For the rest of the uncommon elements, it
starts with first element of permutation A and copies into
new permutation, then switch on the permutation B and
copies the first uncommon element to the next empty
location in the new permutation if there is no repeated
element in the new permutation, otherwise switches to other
uncommon element in another permutation. This process
continues for all uncommon elements in the permutations A
and B to fill out the new permutation empty locations. Note,
if all of the uncommon elements of both permutations have
been visited and still some of the locations remains empty in

the new permutation, then a random unduplicated number
will be generated to fill out any empty location. In modified
MOBFO, after inserting common element of permutation A
and B into a new permutation list, we generated a random
number between [0, 1], and if the random number is greater
than 0.5, we begin copying of elements from permutation A,
otherwise we begin with permutation B.

The proposed MOBFO is given in Algorithm 2 and
consists of ten steps. The steps of the algorithm are similar
to the proposed single objective BFO (Algorithm 1), though
at some points it is designed for multi-objective
optimisation and we describe them here. In step 1, there is
an additional variable M, that shows the number of
objective functions under study. In step 2, a random
permutation is created for each bacterium and MOBFO
computes M objective functions for each bacterium. In
step 3, a non-dominated set solutions are computed using
fast non-dominated sort algorithm. In step 6, in addition to
swap mutation, ULX is applied to update the solutions and
step 3 is repeated. In step 9, step 3 is repeated again to
update non-dominated set, and Tabu search algorithm is
applied on the final non-dominated set to optimise the
solutions locally, and it goes to step 4.

4 Experimental results
We were assessed the performance of the proposed single
objective BFO algorithm using the instances from the
well-known QAPLIB website (Burkard et al., 1997). We ran
experimental analyses on a P4 Laptop with 1.0 GB RAM
and 2.7 GHz Intel CPU. The operating system was
Windows 7 and the developing software was MATLAB
2013a.

Table 2 List of the name, size, and cost of instances obtained from QAPLIB

Name Size Cost Prop. BFO Orig. BFO GA

chr12a 12 9,552 0.10 0.64 NA
chr15a 15 9,896 0.12 0.86 NA
chr18a 18 11,098 0.30 1.01 NA
chr20a 20 2,192 0.18 1.04 NA
chr22a 22 6,156 0.07 0.51 NA
chr25a 25 3,796 0.40 1.17 NA
esc16a 16 68 0.00 0.32 2.94
esc16h 16 996 0.00 0.10 0.00
esc32a 32 130 0.20 0.89 NA
esc32e 32 2 0.00 4.00 0.00
esc32f 32 2 0.00 6.00 0.00
esc64a 64 116 0.00 0.55 NA
esc128 128 64 0.00 2.94 NA
had12 12 1,652 0.00 0.08 0.00
had14 14 2,724 0.00 0.09 0.07

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO
(orig. BFO), and GA algorithms. NA indicates not available.

 A modified single and MOBFO for the solution of QAP 7

Table 2 List of the name, size, and cost of instances obtained from QAPLIB (continued)

Name Size Cost Prop. BFO Orig. BFO GA

had16 16 3,720 0.00 0.07 0.91
had18 18 5,358 0.00 0.06 1.12
had20 20 6,922 0.00 0.06 1.61
kra30a 30 88,900 0.05 0.30 NA
lipa20a 20 3,683 0.00 0.05 NA
lipa20b 20 27,076 0.00 0.26 NA
lipa30a 30 13,178 0.01 0.04 3.19
lipa40a 40 31,538 0.01 0.03 NA
lipa50a 50 1,210,244 0.00 0.26 2.27
lipa60a 60 107,218 0.00 0.02 2.09
lipa70a 70 169,755 0.00 0.02 1.81
lipa80a 80 253,195 0.00 0.02 1.65
lipa90a 90 360,630 0.00 0.02 1.53
nug12 12 578 0.01 0.17 NA
nug14 14 1,014 0.10 0.14 NA
nug15 15 1,150 0.00 0.17 NA
nug16a 16 1,610 0.01 0.17 NA
nug17 17 1,732 0.01 0.17 NA
nug18 18 1,930 0.00 0.17 7.56
nug20 20 2,570 0.00 0.20 NA
nug21 21 2,438 0.00 0.24 NA
nug22 22 3,596 0.01 0.18 NA
nug24 24 3,488 0.00 0.20 NA
nug25 25 3,744 0.00 0.20 NA
nug27 27 5,234 0.01 0.23 NA
nug28 28 5,166 0.01 0.23 NA
nug30 30 6,124 0.00 0.20 NA
rou12 12 235,528 0.02 0.12 NA
rou15 15 354,210 0.03 0.17 NA
rou20 20 725,522 0.00 0.15 NA
scr12 12 31,410 0.00 0.28 NA
scr15 15 51,140 0.04 0.34 NA
scr20 20 110,030 0.00 0.75 NA
sko42 42 15,812 0.00 0.18 NA
sko49 49 23,386 0.01 0.17 NA
sko56 56 34,458 0.01 0.18 NA
sko64 64 48,498 0.01 0.16 NA
sko72 72 66,256 0.02 0.16 NA
sko81 81 90,998 0.01 0.14 NA
sko90 90 115,534 0.00 0.15 NA
sko100a 100 152,002 0.01 0.14 NA
ste36a 36 9,526 0.08 0.61 NA
tai12a 12 224,416 0.01 0.18 NA
tai15a 15 388,214 0.02 0.14 NA
tai17a 17 491,812 0.02 0.15 NA

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO
(orig. BFO), and GA algorithms. NA indicates not available.

8 S. Parvandeh et al.

Table 2 List of the name, size, and cost of instances obtained from QAPLIB (continued)

Name Size Cost Prop. BFO Orig. BFO GA

tai20a 20 703,482 0.01 0.14 NA
tai25a 25 1,167,256 0.02 0.14 9.84
tai30a 30 1,818,146 0.03 0.16 NA
tai35a 35 2,422,002 0.03 0.15 NA
tai40a 40 3,139,370 0.02 0.14 NA
tai50a 50 4,938,796 0.03 0.14 NA
tai60a 60 7,205,962 0.02 0.14 NA
tai64c 64 1,855,928 0.00 0.17 5.31
tai80a 80 13,499,184 0.03 0.13 11.44
tai100a 100 21,052,466 0.02 0.12 11.02
tai150b 150 498,896,643 0.03 0.23 NA
tai256c 256 44,759,294 0.00 0.12 NA
tho30 30 149,936 0.04 0.21 NA
tho40 40 240,516 0.02 0.28 NA
tho150 150 8,133,398 0.02 0.16 NA
wil50 50 48,816 0.00 0.10 7.65
wil100 100 273,038 0.00 0.08 NA

Notes: Last three columns indicate the comparison of percentage gap between the proposed BFO (prop. BFO), original BFO
(orig. BFO), and GA algorithms. NA indicates not available.

Table 2 shows the comparison of the proposed BFO,
original BFO, and GA (Tosun, 2014) on QAPLIB instances.
The comparison is based on the percentage gap between the
solution found and optimum solution reported in QAPLIB.
In this table, the first column is the name of instances, the
second column is the size of instances, third column is the
best solution found using the proposed BFO algorithm, and
last three columns are the percentage gap of the proposed
BFO, original BFO, and GA, respectively. The comparison
of the results indicates that the proposed BFO found the
optimum solution in most of the instances and outperforms
the results of original BFO and GA. These instances
selected among more than 100 instances in QAPLIB to test
the performance of the proposed algorithm with different
problem size (12–256).

Indeed, we have not compared the time-consumption
between different approaches because of the fact that GA
approach ran on different platforms. Instead we compare the
ultimate results to prove that the proposed method can
found good solution regardless of size and time. There are
many other studies that have been shown the
time-consumption, but in order to compare the time we had
to implement the different approaches and ran on the same
machine. This might be one of the pitfalls of this paper and
we leave this for future research.

We were assessed the performance of the proposed
MOBFO using 22 mQAP instances (Knowles and Corne,
2003). The experimental analyses environment as well as
parameters initialisation were the same as the proposed
BFO algorithm according to Table 1.

Table 3 shows the list of 22 mQAP instances with their
size and number of objectives. All of the instances are based

on two objectives with different sizes (10–50) and
categories (read-like and uniform). We have not assessed
the proposed MOBFO on three dimensional problems and
leave this part for future research.

Table 3 List of mQAP instances

Instance name Category Size Objective
KC10-2fl-1rl Real-like 10 2
KC10-2fl-2rl Real-like 10 2
KC10-2fl-3rl Real-like 10 2
KC10-2fl-4rl Real-like 10 2
KC10-2fl-5rl Real-like 10 2
KC20-2fl-1rl Real-like 20 2
KC20-2fl-2rl Real-like 20 2
KC20-2fl-3rl Real-like 20 2
KC20-2fl-4rl Real-like 20 2
KC20-2fl-5rl Real-like 20 2
KC50-2fl-1rl Real-like 50 2
KC50-2fl-2rl Real-like 50 2
KC50-2fl-3rl Real-like 50 2
KC10-2fl-1uni Uniform 10 2
KC10-2fl-2uni Uniform 10 2
KC10-2fl-3uni Uniform 10 2
KC20-2fl-1uni Uniform 20 2
KC20-2fl-2uni Uniform 20 2
KC20-2fl-3uni Uniform 20 2
KC50-2fl-1uni Uniform 50 2
KC50-2fl-2uni Uniform 50

 A modified single and MOBFO for the solution of QAP 9

We also evaluated the performance of the proposed
MOBFO using three assessment metrics, average
generational distance (GD), convergence measure (CM),
and divergence measure (DM) (Mostaghim and Teich,
2004; Okabe et al., 2003). GD reports how far, in average,
known Pareto front is from true Pareto front. In other words,
GD metric evaluates the average distance between the
non-dominated set solutions (E) and optimum Pareto front
(P*). GD can be defined as:

() { }* *1, min (,)
u E

GD E P dist u v v P
E ∈

= ∈ (4)

where dist(u, v) is the Euclidean distance in objective space
between the solution u ∈ E and the nearest member in the
optimum Pareto front (v ∈ P*). Indeed, this metric measures
how far the approximation front is from the optimum Pareto
front. Note, the smaller value of GD represents a better
performance.

CM evaluates average similarity of non-dominated
solutions and Pareto front solutions. CM can be defined as:

1

1

1 () (,)
m n

j k

pf n nds m n

CM
pf

=

+ −

=


 (5)

where pf is Pareto optimum vector, nds is non-dominated
set solutions, m is size of non-dominated set vector, and n is
number of objectives. Note, the bigger the CM, the better
the result.

DM evaluates the spread distribution of vectors
throughout the non-dominated set solutions and can be
defined as:

()
1

2

1

1
1

nds

pf nds i
i

DM d d d d
nds

−

=

= + + −
−  (6)

where di is the Euclidean distance between non-dominated
set solutions, i is the number of non-dominated set
solutions, dpf and dnds are the Pareto optimum vector and
non-dominated set solutions. DM is expected to be better as
the search area is wider, rather than single point, so the
bigger the DM value, the better the result (Lim et al., 2014).

Consequently, we compared the results of these metrics
(GD, CM, and DM) between proposed MOBFO and four
well-known EA approaches: mGRASP/MH (Zinflou et al.,
2013), fuzzy PSO (Zhao et al., 2008), NSGAII (Deb et al.,
2002), and original MOBFO (Niu et al., 2013). Table 4
shows the performance of assessment metrics obtained by
each algorithm for the 22 mQAP instances.

Table 4 Average GD, CM, and DM values for mGRASP/MH, fuzzy PSO, NSGAII, original MOBFO, and proposed MOBFO

Instance name Metric mGRASP/MH Fuzzy PSO NSGAII Original MOBFO Proposed MOBFO

KC10-2fl-1rl GD 6.0364e+04 0 0 3.6304e+04 0
CM 0.0173 0.2242 1 0.0865 1
DM 0.2069 0.2241 1 0.3103 1

KC10-2fl-2rl GD 7.7505e+04 0 0 0 0
CM 0.0667 0.2667 1 0.6668 1
DM 0.3333 0.2667 1 0.6667 1

KC10-2fl-3rl GD 6.5790e+04 0 0 2.0828e+04 0
CM 1.0486e-05 0.1455 1 0.1092 1
DM 0.0909 0.1455 1 0.2545 1

KC10-2fl-4rl GD 1.0145e+04 0 0 2.2742e+03 0
CM 0.3435 0.2283 1 0.2492 1
DM 0.4340 0.2264 1 0.3208 1

KC10-2fl-5rl GD 3.7627e+04 NA 0 0 7.8350e+04
CM 0.2858 NA 1 0.2042 1
DM 0.4490 NA 1 0.3061 1

KC20-2fl-1rl GD 1.0004e+06 NA 8.6505e+04 3.3506e+05 1.4131e+03
CM 1.1602e-05 NA 7.8179e-05 4.0738e-05 0.9140
DM 0.1290 NA 0.4194 0.1398 0.9570

KC20-2fl-2rl GD 5.2403e+06 NA 2.5075e+06 4.8649e+06 1.4435e+06
CM 1.1227e-05 NA 1.0746e-04 1.8974e-05 0.5366
DM 0.0909 NA 0.2455 0.0818 0.7909

Notes: First and second columns are the name of instances and metrics, and the rest of the columns compare the performance of
algorithms. NA indicates not available.

10 S. Parvandeh et al.

Table 4 Average GD, CM, and DM values for mGRASP/MH, fuzzy PSO, NSGAII, original MOBFO, and proposed MOBFO
(continued)

Instance name Metric mGRASP/MH Fuzzy PSO NSGAII Original MOBFO Proposed MOBFO
KC20-2fl-3rl GD 1.0763e+05 NA 4.1562e+04 4.0651e+06 7.9226e+03

CM 2.0048e-05 NA 1.6249e-04 1.0101e-05 0.2711
DM 0.0714 NA 0.3878 0.0408 0.5459

KC20-2fl-4rl GD 9.4466e+05 NA 3.1785e+05 1.4372e+06 9.7568e+04
CM 7.8523e-06 NA 0.0137 6.0072e-06 0.2467
DM 0.1644 NA 0.4658 0.1096 0.6438

KC20-2fl-5rl GD 7.8927e+05 NA 2.3552e+05 1.0829e+06 8.1897e+04
CM 4.2539e-06 NA 3.3240e-05 1.9945e-06 0.0807
DM 0.1129 NA 0.3952 0.0645 0.5000

KC50-2fl-1rl GD NA NA NA 1.8848e+06 2.4066e+04
CM NA NA NA 2.7198e-07 2.4554e-04
DM NA NA NA 0.0139 0.5278

KC50-2fl-2rl GD NA NA NA 2.1147e+06 3.5228e+04
CM NA NA NA 6.3955e-08 1.6289e-04
DM NA NA NA 0.0100 0.5116

KC50-2fl-3rl GD NA NA NA 1.2676e+06 2.7726e+04
CM NA NA NA 9.5983e-07 1.7589e-04
DM NA NA NA 0.0156 0.4630

KC10-2fl-1uni GD 2.3550e+03 0 0 6.2979e+03 0
CM 0.1554 1 1 0.0015 1
DM 0.4615 1 1 0.4615 1

KC10-2fl-2uni GD 8.5809e+03 0 0 0 0
CM 1.2117e-04 1 1 1 1
DM 1 1 1 1 1

KC10-2fl-3uni GD 462.0308 0 0 427.8507 0
CM 0.0488 1 1 0.0104 1
DM 0.2077 1 1 0.1923 1

KC20-2fl-1uni GD 1.4341e+04 NA 3.0844e+03 1.1162e+04 699.2820
CM 9.6647e-04 NA 0.0026 8.2174e-04 0.5472
DM 0.1818 NA 0.4727 0.1273 0.7455

KC20-2fl-2uni GD 5.3530e+05 NA 5.2399e+05 8.5236e+05 3.4735e+05
CM 1.6519e-04 NA 7.8772e-04 7.4803e-06 0.0059
DM 0.3750 NA 0.5000 0.1250 0.7500

KC20-2fl-3uni GD 2.1538e+03 NA 1.1816e+03 5.3478e+03 155.1058
CM 1.8263e-07 NA 1.8208e-07 1.7929e-07 1.8413e-07
DM 0.0051 NA 0.0051 0.0102 0.0051

KC50-2fl-1uni GD NA NA NA 7.5229e+04 2.3338e+03
CM NA NA NA 1.0256e-05 7.7719e-04
DM NA NA NA 0.0471 0.5294

KC50-2fl-2uni GD NA NA NA 2.2387e+05 6.0161e+03
CM NA NA NA 1.5426e-06 2.9983e-04
DM NA NA NA 0.0588 0.4118

KC50-2fl-3uni GD NA NA NA 2.3057e+04 417.7430
CM NA NA NA 1.0802e-04 0.0035
DM NA NA NA 0.0378 0.5689

Notes: First and second columns are the name of instances and metrics, and the rest of the columns compare the performance of
algorithms. NA indicates not available.

 A modified single and MOBFO for the solution of QAP 11

The first column is the instance name, the second column is
the evaluation metric name, and the rest of the columns
indicate the results for each algorithm. Based on the results,
the proposed MOBFO performed better than other
algorithms in terms of the average GD, CM, and DM
values. Other methods have either large GD value or small
CM and DM values.

Figure 1 Comparison results of five algorithms, proposed
MOBFO, original BFO, mGRASP/MH, fuzzy PSO,
NSGA2, and Pareto front (see online version
for colours)

Notes: In this figure KC10/KC20 related to problem

size, and 2fl is related to number of objective
functions. Also, rl/uni related to type of the
problem whether is real (rl) or uniform (uni).

Additionally, we illustrated the graphical performance
comparison of these five algorithms including optimum
Pareto front for two instances from Table 4 (Figure 1).
Although, the proposed MOBFO outperforms NSGAII,

Fuzzy PSO, mGRASP/MH, and original MOBFO, but in
very rare cases the approximation sets found by the
proposed MOBFO are very close to Pareto optimum
solutions. For the future direction, this algorithm can
resolved hyper-parameter optimisation for machine learning
algorithm (Parvandeh and McKinney, 2018; Parvandeh
et al., 2019, 2020). Additionally, we can improve the
document summarisation when we use cosine similarity to
find the optimised summary from multi-document in natural
language processing problems (Parvandeh et al., 2016).

5 Conclusions
In this paper, we proposed modified BFO and MOBFO
algorithms for the solution of QAP and mQAP instances.
The proposed BFO algorithm updates the solution using the
swap mutation method in chemotactic part and improves the
final solution using local Tabu search algorithm to reach
local optimum. And, the proposed MOBFO attempts to find
a non-dominated set solutions to be as close as possible to
Pareto front solutions. MOBFO determines the
non-dominated set solutions using fast non-dominated sort
method and updates solutions set using swap mutation and
ULX operation. Additionally, the final non-dominated set
solutions improves using multi-objective version of local
Tabu search to reach the local optimum. We assessed the
proposed BFO and MOBFO algorithms on QAP and 22
mQAP instances from the QAPLIB. Computational results
showed that BFO and MOBFO performed well on these
instances. We compared both algorithms with the number of
state-of-the-art algorithms as well as the best-known
solutions from QAPLIB. The comparison showed that our
results are very close to the best-known solutions and
outperforms the state-of-the-art algorithms.

References
Alothaimeen, I. and Arditi, D. (2019) ‘Overview of multi-objective

optimization approaches in construction project
management’, in Multi-Criteria Optimization –
Pareto-Optimal and Related Principles.

Benlic, U. and Hao, J-K. (2013) ‘Breakout local search for the
quadratic assignment problem’, Applied Mathematics and
Computation, Vol. 219, No. 9, pp.4800–4815.

Benlic, U. and Hao, J-K. (2015) ‘Memetic search for the quadratic
assignment problem’, Expert Systems with Applications,
Vol. 42, No. 1, pp.584–595.

Burkard, R.E., Karisch, S.E. and Rendl, F. (1997) ‘QAPLIB – a
quadratic assignment problem library’, Journal of Global
Optimization, Vol. 10, No. 4, pp.391–403.

Cui, Z., Zhang, J., Wang, Y., Cao, Y., Cai, X., Zhang, W. and
Chen, J. (2019) ‘A pigeon-inspired optimization algorithm for
many-objective optimization problems’, Science China
Information Sciences, Vol. 62, No. 7, p.70212.

Cui, Z., Zhang, J., Wu, D., Cai, X., Wang, H., Zhang, W. and
Chen, J. (2020) ‘Hybrid many-objective particle swarm
optimization algorithm for green coal production problem’,
Information Sciences, May, Vol. 518, No. 1, pp.256–271.

12 S. Parvandeh et al.

Darvishi, A., Alimardani, A., Vahidi, B. and Hosseinian, S.H.
(2014) ‘Bacterial foraging-based algorithm optimization
based on fuzzy multiobjective technique for optimal power
flow dispatch’, Science International, Lahore, 26 August,
pp.1057–1064.

Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009)
‘Bacterial foraging optimization algorithm: theoretical
foundations, analysis, and applications’, in Abraham, A.,
Hassanien, A-E., Siarry, P. and Engelbrecht, A. (Eds.):
Foundations of Computational Intelligence, Global
Optimization, Vol. 3, pp.23–55, Springer, Berlin, Heidelberg.

Deb, K. (2004) ‘Single and multi-objective optimization using
evolutionary computation’, in Hydroinformatics, pp.14–35,
World Scientific Publishing Company, World Scientific,
Singapore.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) ‘A fast
and elitist multiobjective genetic algorithm: NSGA-II’, IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 2,
pp.182–197.

Emmerich, M.T.M. and Deutz, A.H. (2018) ‘A tutorial on
multiobjective optimization: fundamentals and evolutionary
methods’, Natural Computing, Vol. 17, No. 3, pp.585–609.

Ghosh, A. and Das, M. (2008) ‘Non-dominated rank based sorting
genetic algorithms’, Fundamenta Informaticae – FUIN ‘83,
January, pp.231–252.

Gunantara, N. (2018) ‘A review of multi-objective optimization:
methods and its applications’, in Ai, Q. (Ed.): Cogent
Engineering, Vol. 5, No. 1, p.1502242.

Knowles, J. and Corne, D. (2003) ‘Instance generators and test
suites for the multiobjective quadratic assignment problem’,
in Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L. and
Deb, K. (Eds.): Evolutionary Multi-Criterion Optimization,
pp.295–310, Springer, Berlin, Heidelberg.

Knowles, J.D. and Corne, D.W. (2000) ‘Approximating the
non-dominated front using the Pareto archived evolution
strategy’, Evolutionary Computation, Vol. 8, No. 2,
pp.149–172.

Koopmans, T.C. and Beckmann, M. (1957) ‘Assignment problems
and the location of economic activities’, Econometrica,
Vol. 25, No. 1, pp.53–76.

Li, S-X. and Wang, J-S. (2017) ‘Improved Cuckoo search
algorithm with novel searching mechanism for solving
unconstrained function optimization problem’, IAENG
International Journal of Computer Science, ,Vol. 44, No. 1,
pp.8–12.

Lim, K.S., Buyamin, S., Ahmad, A., Shapiai, M.I., Naim, F.,
Mubin, M. and Kim, D.H. (2014) ‘Improving vector
evaluated particle swarm optimisation using multiple
nondominated leaders’, in Agarwal, P., Bhatnagar, V. and
Zhang, Y. (Eds.): The Scientific World Journal, Vol. 14,
p.364179.

Luo, C., Yin, X. and Ni, C. (20015) ‘A novel discrete bacterial
foraging algorithm and its application’, JCM, Vol. 10, No. 4,
pp.238–244.

Michalak, K. (2016) ‘Evolutionary algorithm with a directional
local search for multiobjective optimization in combinatorial
problems’, Optimization Methods and Software, Vol. 31,
No. 2, pp.392–404.

Misevicius, A. and Kilda, B. (2005) ‘Comparison of crossover
operators for the quadratic assignment problem’, Information
Technology and Control, Vol. 34, No. 2, pp.109–119.

Mostaghim, S. and Teich, J. (2004) ‘A new approach on many
objective diversity measurement’, in Practical Approaches to
Multi-Objective Optimization, pp.1–15, Dagstuhl, Germany.

Niu, B., Wang, H., Wang, J. and Tan, L. (2013) ‘Multi-objective
bacterial foraging optimization’, Neurocomputing, Vol. 116,
pp.336–345.

Ojha, M., Singh, K.P., Chakraborty, P. and Verma, S. (2019) ‘A
review of multi-objective optimisation and decision making
using evolutionary algorithms’, International Journal of
Bio-Inspired Computation, Vol. 14, No. 2, pp.69–84.

Okabe, T., Jin, Y. and Sendhoff, B. (2003) ‘A critical survey of
performance indices for multi-objective optimisation’, in The
2003 Congress on Evolutionary Computation, CEC ‘03,
Vol. 2, pp.878–885.

Parvandeh, S. and McKinney, B.A. (2018) ‘EpistasisRank and
EpistasisKatz: interaction network centrality methods that
integrate prior knowledge networks’, in Kelso, J. (Ed.):
Bioinformatics, 1 July, Vol. 35, No. 13, pp.2329–2331.

Parvandeh, S., Lahiri, S. and Boroumand, F. (2016) ‘PerSum:
novel systems for document summarization in Persian’,
International Journal of Asian Language Processing, Vol. 26,
No. 2, pp.67–108.

Parvandeh, S., Poland, G., Kennedy, R., McKinney, B.,
Parvandeh, S., Poland, G.A., Kennedy, R.B. and
McKinney, B.A. (2019) ‘Multi-level model to predict
antibody response to influenza vaccine using gene expression
interaction network feature selection’, Microorganisms,
Vol. 7, No. 3, p.79.

Parvandeh, S., Yeh, H-W., Paulus, M.P. and McKinney, B.A.
(2020) ‘Consensus features nested cross-validation’,
Bioinformatics, 15 May, Vol. 36, No. 10, pp.3093–3098.

Passino, K.M. (2002) ‘Biomimicry of bacterial foraging for
distributed optimization and control’, IEEE Control Systems
Magazine, Vol. 22, No. 3, pp.52–67.

Passino, K.M. (2010) ‘Bacterial foraging optimization’,
Int. J. Swarm. Intell. Res., Vol. 1, No. 1, pp.1–16.

Shukla, A. (2015) ‘A modified bat algorithm for the quadratic
assignment problem’, in 2015 IEEE Congress on
Evolutionary Computation (CEC), pp.486–490.

Soni, N. and Kumar, T. (2014) ‘Study of various mutation
operators in genetic algorithms’, International Journal of
Computer Science and Information Technologies, Vol. 5,
No. 3, pp.4519–4521.

Srinivas, N. and Deb, K. (1994) ‘Muiltiobjective optimization
using nondominated sorting in genetic algorithms’,
Evolutionary Computation, Vol. 2, No. 3, pp.221–248.

Tabitha, J., Rego, C. and Glover, F. (2009) ‘A cooperative parallel
Tabu search algorithm for the quadratic assignment problem’,
European Journal of Operational Research, Vol. 195, No. 3,
pp.810–826.

Tate, D.M. and Smith, A.E. (1995) ‘A genetic approach to the
quadratic assignment problem’, Computers & Operations
Research, Vol. 22, No. 1, pp.73–83.

Tosun, U. (2014) ‘A new recombination operator for the genetic
algorithm solution of the quadratic assignment problem’,
Procedia Computer Science, Vol. 32, pp.29–36.

Tosun, U., Dokeroglu, T. and Cosar, A. (2013) ‘A robust island
parallel genetic algorithm for the quadratic assignment
problem’, International Journal of Production Research,
Vol. 51, No. 14, pp.4117–4133.

Wang, C-F. and Zhang, Y-H. (2016) ‘An improved artificial bee
colony algorithm for solving optimization problems’, JOUR,
January, Vol. 43, pp.336–343.

 A modified single and MOBFO for the solution of QAP 13

Wang, J-S. and Song, J-D. (2017) ‘Chaotic biogeography-based
optimisation algorithm’, IAENG International Journal of
Computer Science, Vol. 44, No. 2, pp.127–139.

Yazdi, J., Choi, Y.H. and Kim, J.H. (2017) ‘Non-dominated
sorting harmony search differential evolution (NS-HS-DE): a
hybrid algorithm for multi-objective design of water
distribution networks’, Water.

Yi, J., Huang, D., Fu, S., He, H. and Li, T. (2016) ‘Multi-objective
bacterial foraging optimization algorithm based on parallel
cell entropy for aluminum electrolysis production process’,
IEEE Transactions on Industrial Electronics, Vol. 63, No. 4,
pp.2488–2500.

Zhang, Q. and Li, H. (2007) ‘MOEA/D: a multiobjective
evolutionary algorithm based on decomposition’, IEEE
Transactions on Evolutionary Computation, Vol. 11, No. 6,
pp.712–731.

Zhao, F., Liu, Y., Shao, Z., Jiang, X., Zhang, C. and Wang, J.
(2016) ‘A chaotic local search based bacterial foraging
algorithm and its application to a permutation flow-shop
scheduling problem’, International Journal of Computer
Integrated Manufacturing, Vol. 29, No. 9, pp.962–981.

Zhao, M., Abraham, A., Grosan, C. and Liu, H. (2008) ‘A fuzzy
particle swarm approach to multiobjective quadratic
assignment problems’, in 2008 Second Asia International
Conference on Modelling & Simulation (AMS), pp.516–521.

Zinflou, A., Gagné, C. and Gravel, M. (2013) ‘A hybrid
genetic/immune strategy to tackle the multiobjective
quadratic assignment problem’, Artificial Life Conference
Proceedings, July, Vol. 25, pp.933–939.

Zitzler, E. and Thiele, L. (1999) ‘Multiobjective evolutionary
algorithms: a comparative case study and the strength Pareto
approach’, IEEE Transactions on Evolutionary Computation,
Vol. 3, No. 4, pp.257–271.

