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Abstract: Let Fq denote the finite field of order q and characteristic p, n be a
positive integer coprime to q and t ≥ 2 be an integer satisfying t 6≡ 1(mod p). In
this paper, we place a new trace bilinear form on F

n
qt , which is called the ∗ trace

bilinear form and is a generalisation of the trace inner product when q = t = 2

and Hermitian trace inner product when q is even and t = 2. We observe that it is
a non-degenerate, symmetric bilinear form on F

n
qt for any prime power q and is

alternating when q is even. We study dual codes of cyclic Fq-linear Fqt -codes of
length n with respect to this bilinear form. We also explicitly determine bases of
all the complementary-dual, self-orthogonal and self-dual cyclic Fq-linear Fq2 -
codes of length n, and enumerate all the self-orthogonal and self-dual cyclic
Fq-linear Fqt -codes of length n. Besides this, by placing ordinary and Hermitian
trace inner products on F

n
q2 , we determine bases of all the complementary-dual

cyclic Fq-linear Fq2 -codes of length n.
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1 Introduction

Additive codes of length n over the finite field F4 are introduced and studied by Calderbank

et al. (1998). In the same work, the problem of finding quantum error-correcting codes is

related to the problem of finding self-orthogonal additive codes over F4 with respect to

the trace inner product on Fn
4 . Later, this theory is generalised to additive codes over the

finite field Fp2 by Rains (1999), where p is a prime. Additive codes over any arbitrary

finite field are further studied by Bierbrauer and Edel (2000) using twisted BCH-codes.

For any prime power q, self-orthogonal additive codes over Fq2 (with respect to the trace

symplectic inner product) are related to q-ary quantum codes by Ashikhmin and Knill

(2001), thereby generalising the work of Calderbank et al. (1998). A general theory for

decomposing additive self-dual codes (with respect to the Hermitian trace inner product)

over F4 is presented by Huffman (2007). Cyclic additive codes of odd length over F4

are further studied and enumerated by Huffman (2007a) by writing a canonical form

decomposition of these codes. Besides this, self-orthogonal and self-dual cyclic additive

codes of odd length n over F4 (with respect to the trace inner product on Fn
4 ) are also

enumerated. In another paper, this work is extended by Huffman (2008) for cyclic additive

codes of even length over F4. A parametric description and enumeration of these codes

are also given. In a related work, a transform domain characterisation of cyclic Fq-linear

Fqt -codes is obtained by Dey and Rajan (2005) using the discrete Fourier transform, where

t ≥ 2 is an integer. In the same work, the non-existence of self-dual cyclic Fq-linear Fqt-

codes of certain parameters is also established. Cyclic Fq-linear Fqt-codes of length n

coprime to q are further studied by Bierbrauer (2007) using the theory of twisted codes. The

theory of cyclic Fq-linear Fqt -codes of length n with gcd(n, q) = 1 is further developed

by Bierbrauer (2012).

In order to further explore the properties of cyclic Fq-linear Fqt-codes, the theory

developed in Huffman (2007a) is further generalised by Huffman (2010). To be

more precise, cyclic Fq-linear Fqt-codes of length n are viewed as Fq[X]/ 〈Xn − 1〉-
submodules of the quotient ring Fqt [X]/ 〈Xn − 1〉 , where gcd(n, q) = 1 and t ≥ 2 are an

integer. Using this, the number of cyclic Fq-linear Fqt -codes of length n is determined and

their dual codes with respect to the ordinary and Hermitian trace inner products on Fn
qt are

also studied. In addition to this, bases of all the self-orthogonal and self-dual cyclic Fq-

linear Fq2 -codes with respect to these two trace inner products are explicitly determined.

Furthermore, for any integer t ≥ 2, all the self-dual and self-orthogonal cyclic Fq-linear

Fqt -codes of length n are enumerated with respect to these two bilinear forms. In a recent

work, cyclic Fq-linear Fqt -codes of length n are investigated by Cao and Gao (2015) using

the theory of linear codes over finite chain rings, where gcd(n, q) 6= 1.
Let q be a power of the prime p, n be a positive integer coprime to q, and t ≥ 2 be

an integer satisfying t 6≡ 1(mod p). In this paper, a new trace bilinear form, denoted by ∗,
is introduced and studied on Fn

qt , which coincides with the trace inner product considered

by Calderbank et al. (1998) when q = t = 2 and Hermitian trace inner product considered

by Ezerman et al. (2013) when q is even and t = 2 (see Remark 3.1). The dual codes of

cyclic Fq-linear Fqt -codes with respect to ∗ are also studied. Analogous to the class of

complementary-dual cyclic codes studied by Massey (1992) and Yang and Massey (1994),

we introduce and study complementary-dual cyclic Fq-linear Fqt-codes with respect ∗,
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ordinary and Hermitian trace bilinear forms on Fn
qt . To be more precise, basis sets of all

the complementary-dual cyclic Fq-linear Fq2 -codes are explicitly determined with respect

to ∗, ordinary and Hermitian trace bilinear forms on Fn
q2 . By placing ∗ trace bilinear

form on Fn
q2 , all the self-dual and self-orthogonal cyclic Fq-linear Fq2 -codes are explicitly

determined in terms of their basis sets. All the self-dual and self-orthogonal cyclic Fq-linear

Fqt -codes are also enumerated for any integer t ≥ 2 with respect to ∗. In a subsequent

work, we shall enumerate all the complementary-dual cyclic Fq-linear Fqt -codes of length

n with respect to ∗, ordinary and Hermitian trace bilinear forms on Fn
qt , where t ≥ 2 is an

integer.

This paper is structured as follows: In Section 2, we state some preliminaries that are

needed to derive our main results. In Section 3, we define ∗ trace bilinear form (·, ·)∗ on

Fn
qt and study its properties (Lemma 3.2). We also define a sesquilinear form [·, ·]∗ on

Fqt [X]/ 〈Xn − 1〉 and study its properties by relating it to ∗ trace bilinear form (·, ·)∗
on Fn

qt (Lemma 3.3). In Section 4, we determine bases of all the complementary-dual cyclic

Fq-linear Fq2 -codes of length n with respect to ∗, ordinary and Hermitian trace bilinear

forms (Theorem 4.2), and enumerate these three classes of codes (Theorem 4.3). Besides

this, by placing ∗ trace bilinear form on Fn
qt , we explicitly determine bases of all the self-

orthogonal and self-dual cyclic Fq-linear Fqt-codes of length n when t = 2 (Theorems

4.4 and 4.6) and enumerate these two classes of codes for any integer t ≥ 2 satisfying

t 6≡ 1(mod p) (Theorems 4.5 and 4.7–4.9).

2 Some preliminaries

In this section, we state some preliminaries that are needed to derive our main results.

Throughout this paper, let q be a power of the prime p, Fq denote the finite field

with q elements, n be a positive integer coprime to p and t ≥ 2 be an integer. Let R
(q)
n

and R
(qt)
n denote the quotient rings Fq[X]/〈Xn − 1〉 and Fqt [X]/〈Xn − 1〉, respectively,

where X is an indeterminate over Fp and over any extension field of Fp. We shall

represent elements of the rings R
(q)
n and R

(qt)
n by their representatives of degree strictly

less than n in Fq[X] and Fqt [X], respectively. As gcd(n, q) = 1, by Maschke’s Theorem,

both the rings R
(q)
n and R

(qt)
n are semi-simple, and hence can be written as direct sums

of minimal ideals, all of which are fields. More explicitly, if {ℓ0 = 0, ℓ1, · · · , ℓs−1}
is a complete set of representatives of q-cyclotomic cosets modulo n, then Xn −
1 = m0(X)m1(X) · · ·ms−1(X) is the factorisation of Xn − 1 into monic irreducible

polynomials over Fq with mi(X) =
∏

k∈C
(q)

ℓi

(X − ηk) for 0 ≤ i ≤ s− 1, where C
(q)
ℓi

(0 ≤

i ≤ s− 1) is the q-cyclotomic coset modulo n containing the integer ℓi and η is a primitive

nth root of unity in an extension field of Fq. Therefore if Ki is the ideal of R
(q)
n generated

by the polynomial (Xn − 1)/mi(X) for 0 ≤ i ≤ s− 1, then it is easy to see that R
(q)
n =

K0 ⊕K1 ⊕ · · · ⊕ Ks−1, where KiKj = {0} for all i 6= j and Ki ≃ Fqdi with di as the

cardinality of C
(q)
ℓi

. Note that when n is even, there exists an integer i# satisfying 0 ≤

i# ≤ s− 1 and C
(q)
ℓ
i#

= C
(q)
n

2

= {n
2 }, as q is odd.

In order to write R
(qt)
n as the direct sum of minimal ideals, we further factorise the

polynomials m0(X),m1(X), · · · ,ms−1(X) into monic irreducible polynomials over Fqt .

To do this, by Lemma 1 of Huffman (2010), we see that C
(q)
ℓi

= C
(qt)
ℓi

∪ C
(qt)
ℓiq

∪ · · · ∪

C
(qt)

ℓiq
gi−1 with gi = gcd(di, t) for 0 ≤ i ≤ s− 1, which led to the following factorisation
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of mi(X) over Fqt : mi(X) = Mi,0(X)Mi,1(X) · · ·Mi,gi−1(X), where Mi,j(X) =
∏

k∈C
(qt)

ℓiq
j

(X − ηk) for 0 ≤ j ≤ gi − 1 with 0 ≤ i ≤ s− 1. Therefore, if for each i and

j, Ii,j is the ideal of R
(qt)
n generated by (Xn − 1)/Mi,j(X), then one can show that

R
(qt)
n =

s−1
⊕

i=0

gi−1
⊕

j=0

Ii,j , where Ii,jIi′j′ = {0} for (i, j) 6= (i′, j′) and Ii,j ≃ FqtDi with

Di =
di

gi
. Further, it is easy to see that Ji = Ii,0 ⊕ Ii,1 ⊕ · · · ⊕ Ii,gi−1 is a vector space

of dimension t over Ki for 0 ≤ i ≤ s− 1.

In order to study the containment R
(q)
n ⊂ R

(qt)
n , Huffman (2010) defined the

ring automorphism τqu,w : R
(qr)
n → R

(qr)
n as τqu,w

(

n−1
∑

i=0

aiX
i

)

=
n−1
∑

i=0

a
qu

i Xwi for any

integer r ≥ 1, where u,w are integers satisfying 0 ≤ u ≤ r, 1 ≤ w ≤ n− 1 and

gcd(w, n) = 1. When r = t, by Lemma 2 of Huffman (2010), we see that τqu,w permutes

ideals Ii,j’s of the ring R
(qt)
n .

Now an Fq-linear Fqt -code C of length n is defined as an Fq-linear subspace of

Fn
qt . Further the code C is said to be cyclic if (c0, c1, · · · , cn−1) ∈ C implies that

(cn−1, c0, c1, · · · , cn−2) ∈ C. Throughout this paper, we shall identify each vector a =

(a0, a1, · · · , an−1) ∈ Fn
qt with a(X) =

n−1
∑

i=0

aiX
i ∈ R

(qt)
n . Under this identification, one

can easily observe that the cyclic shift σ(a) = (an−1, a0, a1, · · · , an−2) of a ∈ Fn
qt is

identified with Xa(X) ∈ R
(qt)
n . Therefore every cyclic Fq-linear Fqt -code of length n can

be viewed as an R
(q)
n -submodule of R

(qt)
n . Huffman (2010) studied dual codes of cyclic

Fq-linear Fqt -codes of length n with respect forms, which are as defined below:

Let Trq,t : Fqt → Fq be the trace map defined as Trq,t(α) =
t−1
∑

j=0

αqj for each α ∈ Fqt .

It is well known that Trq,t is an Fq-linear, surjective map with kernel of size qt−1 (see Lidl
and Niederreiter (1994, p.51)). Then for any integer t ≥ 2, the ordinary trace inner product
on Fn

qt is a map (·, ·)0 : Fn
qt × Fn

qt → Fq, defined as

(a, b)0 =

n−1
∑

j=0

Trq,t(ajbj) for a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) ∈ F
n

qt ,

while the ordinary trace sesquilinear form on R
(qt)
n is a map [·, ·]0 : R

(qt)
n ×R

(qt)
n → R

(q)
n ,

defined as

[a(X), b(X)]0 =

t−1
∑

u=0

τqu,1 (a(X)τ1,−1(b(X))) for a(X), b(X) ∈ R(qt)
n .

The Hermitian trace inner product on Fn
qt is a generalisation of the trace inner product

considered by Calderbank et al. (1998) and Rains (1999) on Fn
q2 . It is defined only for even

integers t ≥ 2, which can be written as t = 2ym, where y ≥ 1 and m are odd. It is easy to

see that there exists an element γ ∈ Fq2
y satisfying γ + γq2

y−1

= 0. Then the Hermitian

trace inner product on Fn
qt is a map (·, ·)γ : Fn

qt × Fn
qt → Fq, defined as

(a, b)γ =

n−1
∑

j=0

Trq,t(γajb
q
t/2

j
) for a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) ∈ F

n

qt ,
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while the Hermitian trace sesquilinear form on R
(qt)
n is a map [·, ·]γ : R

(qt)
n ×R

(qt)
n →

R
(q)
n , defined as

[a(X), b(X)]γ =

t−1
∑

u=0

τqu,1
(

γa(X)τqt/2,−1(b(X))
)

for a(X), b(X) ∈ R(qt)
n .

For more details, one may refer to Huffman (2010).

From now onwards, we will follow the same notations as in Section 2. In the following

section, we shall introduce and study another generalisation of the trace inner product

considered by Calderbank et al. (1998) when q = t = 2 and Hermitian trace inner product

considered by Ezerman et al. (2013) when q is even and t = 2.

3 ∗-Trace sesquilinear forms on Fn
qt and R

(qt)
n

In this section, we will define new sesquilinear forms on Fn
qt and R

(qt)
n for any integer

t ≥ 2 satisfying t 6≡ 1(mod p), and study their properties. For this, we need the following

lemma:

Lemma 3.1: Let t ≥ 2 be an integer satisfying t 6≡ 1(mod p). Then the map φ :
Fqt →Fqt defined as

φ(α) = αq + αq2 + · · ·+ αqt−1

for each α ∈ Fqt ,

is an Fq-linear vector space automorphism.

Proof: To prove this, by Sylvester’s law of nullity, it suffices to prove that φ is an injective

Fq-linear vector space homomorphism (see Hoffman and Kunze (1971, p.71)). Towards

this, we first observe that φ is an Fq-linear map. Next to prove that φ is an injective map,

we will show that the kernel of φ is {0}. For this, we first note that φ(0) = 0. Further, if

α lies in the kernel of φ, then φ(α) = αq + αq2 + · · ·+ αqt−1

= 0, which gives φ(α)q =

α+ αq2 + · · ·+ αqt−1

= 0. From this, we obtain φ(α)− φ(α)q = αq − α = 0, which

gives αqu = α for each integer u (1 ≤ u ≤ t− 1). This implies that (t− 1)α = φ(α) = 0,
which holds only when α = 0, as t 6≡ 1(mod p). This proves the lemma. �

Next we define a mapping (·, ·)∗ : Fn
qt × Fn

qt → Fq as

(a, b)∗ =

n−1
∑

j=0

Trq,t(ajφ(bj)) for all a = (a0, a1, · · · , an−1) and b = (b0, b1, · · · , bn−1) in F
n
qt
.

It is easy to see that for all a = (a0, a1, · · · , an−1) and b = (b0, b1, · · · , bn−1) in Fn
qt ,

(a, b)∗ =

n−1
∑

j=0

{Trq,t(aj)Trq,t(bj)− Trq,t(ajbj)} =

n−1
∑

j=0

Trq,t(aj)Trq,t(bj)− (a, b)0. (1)
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In the following lemma, we prove that the mapping (·, ·)∗ is a non-degenerate and

symmetric bilinear form on Fn
qt for any prime power q, and is alternating when q is even.

Lemma 3.2: For a, b, c ∈ Fn
qt and α ∈ Fq, the following hold:

i (a, b)∗ ∈ Fq.

ii (a, b+ c)∗ = (a, b)∗ + (a, c)∗ and (a+ b, c)∗ = (a, c)∗ + (b, c)∗.

iii (αa, b)∗ = (a, αb)∗ = α(a, b)∗.

iv (·, ·)∗ is symmetric.

v (·, ·)∗ is non-degenerate.

vi (·, ·)∗ is alternating when q is even.

Proof: Parts (i)–(iv) follow immediately from (1) and using the fact that Trq,t is an Fq-

linear map.

In order to prove (v), we see that as (·, ·)∗ is symmetric, it is enough to show that

if (a, b)∗ = 0 for all b ∈ Fn
qt , then a = 0. Suppose, on the contrary, that there exists a

non-zero vector a = (a0, a1, · · · , an−1) ∈ Fn
qt such that (a, b)∗ = 0 for all b ∈ Fn

qt . Let

j (0 ≤ j ≤ n− 1) be an integer such that aj 6= 0. Now as Trq,t is an onto map, there exists

θ ∈ Fqt such that Trq,t(θ) 6= 0. Then for b = (b0, b1, · · · , bn−1) with bj = φ−1(θa−1
j ) and

bi = 0 for all i 6= j, we get (a, b)∗ = Trq,t(θ) 6= 0, which is a contradiction.

To prove (vi), we assume that q is even. Then for each a = (a0, a1, · · · , an−1) ∈ Fn
qt ,

we have (a, a)∗ =
n−1
∑

j=0

{

Trq,t(aj)
2 − Trq,t(a

2
j )
}

, by (1). Now as q is even, it is easy to see

that Trq,t(aj)
2 = Trq,t(a

2
j ) for 0 ≤ j ≤ n− 1, which implies that (a, a)∗ = 0. �

Remark 3.1: When t = 2, we have (a, b)∗ =
n−1
∑

j=0

Trq,2(ajb
q
j) =

n−1
∑

j=0

(ajb
q
j + a

q
jbj) for

all a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) ∈ Fn
q2 . Therefore, ∗ trace bilinear form

on Fn
qt is a generalisation of the trace inner product considered by Calderbank et al. (1998)

when q = t = 2 and Hermitian trace inner product considered by Ezerman et al. (2013)

when q is even and t = 2.

Next we define a mapping [·, ·]∗ : R
(qt)
n ×R

(qt)
n → R

(q)
n as follows:

[a(X), b(X)]
∗
=

t−1
∑

u=0

τqu,1

(

a(X)

t−1
∑

w=1

τqw,−1

(

b(X)
))

=

t−1
∑

u=0

t−1
∑

w=1

τqu,1

(

a(X)
)

τqu+w,−1

(

b(X)
)

for all a(X), b(X) ∈ R
(qt)
n .

In the following lemma, we relate the mapping [·, ·]∗ with the bilinear form (·, ·)∗ on

Fn
qt , and prove that it is a non-degenerate and Hermitian τ1,−1-sesquilinear form on R

(qt)
n .

Lemma 3.3: For a(X), b(X), c(X) ∈ R
(qt)
n and f(X) ∈ R

(q)
n , the following hold:

i [a(X), b(X)]∗ =
n−1
∑

k=0

(

a, σk(b)
)

∗
Xk.
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ii [a(X), b(X)]∗ ∈ R
(q)
n .

iii [a(X), b(X) + c(X)]∗ = [a(X), b(X)]∗ + [a(X), c(X)]∗ and

[a(X) + b(X), c(X)]∗ = [a(X), c(X)]∗ + [b(X), c(X)]∗ .

iv [f(X)a(X), b(X)]∗ = f(X) [a(X), b(X)]∗ and

[a(X), f(X)b(X)]∗ = τ1,−1

(

f(X)
)

[a(X), b(X)]∗ .

v [a(X), b(X)]∗ = τ1,−1

(

[b(X), a(X)]∗
)

.

vi [·, ·]∗ is non-degenerate.

Proof: To prove this, we write a(X) = a0 + a1X + · · ·+ an−1X
n−1, b(X) =

b0 + b1X + · · ·+ bn−1X
n−1 and c(X) = c0 + c1X + · · ·+ cn−1X

n−1. Let a =
(a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) and c = (c0, c1, · · · , cn−1).

i By definition, we have

[a(X), b(X)]∗ =
t−1
∑

u=0

t−1
∑

w=1

τqu,1
(

a(X)
)

τqu+w,−1

(

b(X)
)

=

t−1
∑

u=0

t−1
∑

w=1

n−1
∑

k=0

( n−1
∑

i,j=0

i−j≡k(mod n)

a
qu

i b
qu+w

j

)

Xk,

which clearly equals (a, b)∗ + (a, σ(b))∗X + · · ·+ (a, σn−1(b))∗X
n−1.

ii It follows from part (i) and Lemma 3.2(i).

iii Since τqu,1 and τqu,−1 are ring automorphisms for each integer u ≥ 0, part (iii)

follows.

iv As f(X) ∈ R
(q)
n , one can observe that the ring automorphisms τqu,1 and τqu,−1

satisfy τqu,1
(

f(X)
)

= f(X) and τqu,−1

(

f(X)
)

= τ1,−1

(

f(X)
)

for each integer

u ≥ 0. From this, part (iv) follows immediately.

v By part (i), we have [a(X), b(X)]∗ = (a, b)∗ +
(

a, σ(b)
)

∗
X + · · ·+

(

a, σn−1(b)
)

∗
Xn−1. By Lemma 3.2(iv), we have

(

a, σk(b)
)

∗
= (σk(b), a)∗ for

0 ≤ k ≤ n− 1. Further for each k, we observe that (σk(b), a)∗ = (b, σn−k(a))∗,
from which we obtain

[a(X), b(X)]∗ = (b, a)∗ + (b, σn−1(a))∗X + · · ·+ (b, σ(a))∗X
n−1

= τ1,−1

(

(b, a)∗ + (b, σ(a))∗X + · · ·+ (b, σn−1(a))∗X
n−1
)

= τ1,−1

(

[b(X), a(X)]∗
)

,

using part (i) again.

vi In order to prove (vi), we need to show that if [a(X), b(X)]∗ = 0 for all

b(X) ∈ R
(qt)
n , then a(X) = 0. Suppose, on the contrary, that a(X) 6= 0. Then there

exists j (0 ≤ j ≤ n− 1) such that aj 6= 0. As Trq,t is an onto map, there exists

θ ∈ Fqt such that Trq,t(θ) 6= 0. Then for b(X) = φ−1(θa−1
j )Xj , by part (i), we

have [a(X), b(X)]∗ = (a, b)∗ = Trq,t(θ) 6= 0, which is a contradiction. �
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Now we proceed to study dual codes of cyclic Fq-linear Fqt-codes of length n with respect

to the bilinear forms (·, ·)0, (·, ·)γ and (·, ·)∗ on Fn
qt .

4 Dual codes of cyclic Fq-linear Fqt-codes

For δ ∈ {∗, 0, γ}, throughout this paper, let Tδ be defined as

i the set of all integers t ≥ 2 satisfying t 6≡ 1(mod p) when δ = ∗

ii the set of all integers t ≥ 2 when δ = 0

iii the set of all even integers t ≥ 2 when δ = γ.

Now for each δ ∈ {∗, 0, γ} with t ∈ Tδ, the δ-dual code of C is defined as C⊥δ = {v ∈
Fn
qt : (v, c)δ = 0 for all c ∈ C}. It is easy to see that the dual code C⊥δ is also an Fq-linear

Fqt -code of length n. Further, if the code C is cyclic, then its dual code C⊥δ is also cyclic.

From now onwards, we shall view cyclic Fq-linear Fqt-codes of length n and their δ-dual

codes as R
(q)
n -submodules of R

(qt)
n . Furthermore, if C ⊆ R

(qt)
n is any cyclic Fq-linear Fqt-

code, then one can easily view its dual code C⊥δ ⊆ R
(qt)
n as the dual code of C with respect

to the sesquilinear form [·, ·]δ on R
(qt)
n for each δ ∈ {∗, 0, γ}.

Now to study the properties of δ-dual codes of cyclic Fq-linear Fqt -codes of length

n, we need to study actions of the ring automorphisms τqu,−1 (0 ≤ u ≤ t− 1) on the

ideals Ji (0 ≤ i ≤ s− 1) of R
(qt)
n . For this, we observe that C

(q)
−ℓ0

= C
(q)
ℓ0

, and further for

each i (1 ≤ i ≤ s− 1), there exists a unique integer i′ (1 ≤ i′ ≤ s− 1) satisfying C
(q)
−ℓi

=

C
(q)
ℓ
i′
. This gives rise to a permutation µ of {0, 1, 2, · · · , s− 1} defined by C

(q)
−ℓi

= C
(q)
ℓµ(i)

for 0 ≤ i ≤ s− 1. Note that µ(0) = 0 and µ(µ(i)) = i for 0 ≤ i ≤ s− 1. That is, µ is

either the identity permutation or is a product of transpositions. When n is even, there

exists an integer i# (0 ≤ i# ≤ s− 1) satisfying C
(q)
ℓ
i#

= C
(q)
n

2

= {n
2 }, as q is odd. Note

that C
(q)
−ℓ

i#
= C

(q)
ℓ
i#

so that µ(i#) = i#. Next we make the following observation:

Lemma 4.1: Let u (0 ≤ u ≤ t− 1) be a fixed integer. Then we have τqu,−1(Ji) = Jµ(i)

for 0 ≤ i ≤ s− 1.

Proof: Working in a similar way as in Lemma 8 of Huffman (2010), the result follows. �

Huffman (2010) proved the following theorem for δ ∈ {0, γ} and we observe that it

also holds for δ = ∗. The proof, being similar to that of Huffman (2010, Theorem 7), is left

to the reader.

Theorem 4.1: Let C be a cyclic Fq-linear Fqt -code of length n. For δ ∈ {∗, 0, γ} with

t ∈ Tδ, we have C = C0 ⊕ C1 ⊕ · · · ⊕ Cs−1 and C⊥δ = C
(δ)
0 ⊕ C

(δ)
1 ⊕ · · · ⊕ C

(δ)
s−1, where

Ci = C ∩ Ji and C
(δ)
i = C⊥δ ∩ Ji for all 0 ≤ i ≤ s− 1. Furthermore, for each i, we

have C
(δ)
µ(i) = {a(X) ∈ Jµ(i) : [a(X), c(X)]δ = 0 for all c(X) ∈ Ci} and dimKµ(i)

C
(δ)
µ(i) =

t− dimKi
Ci for 0 ≤ i ≤ s− 1. (Throughout this paper, dimKV denotes the dimension of

a finite-dimensional vector space V over the field K.)
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Further, a cyclic Fq-linear Fqt -code C of length n is said to be

• δ-complementary-dual if it satisfies C ∩ C⊥δ = {0}.

• δ-self-orthogonal if it satisfies C ⊆ C⊥δ .

• δ-self-dual if it satisfies C = C⊥δ .

The following lemma characterises all the δ-complementary-dual, δ-self-orthogonal and

δ-self-dual cyclic Fq-linear Fqt -codes.

Lemma 4.2: For δ ∈ {∗, 0, γ} with t ∈ Tδ, let C be a cyclic Fq-linear Fqt -code of

length n. Let us write C = C0 ⊕ C1 ⊕ · · · ⊕ Cs−1 and C⊥δ = C
(δ)
0 ⊕ C

(δ)
1 ⊕ · · · ⊕ C

(δ)
s−1,

where Ci = C ∩ Ji and C
(δ)
i = C⊥δ ∩ Ji for all 0 ≤ i ≤ s− 1. Then

i the code C is δ-complementary-dual if and only if Ci ∩ C
(δ)
i = {0} for all

0 ≤ i ≤ s− 1

ii the code C is δ-self-orthogonal if and only if Ci ⊆ C
(δ)
i for all 0 ≤ i ≤ s− 1

iii the code C is δ-self-dual if and only if Ci = C
(δ)
i for all 0 ≤ i ≤ s− 1.

Proof: Proof is trivial. �

First of all, we will consider the case t = 2 and we will study δ-dual codes of cyclic Fq-

linear Fq2 -codes for each δ ∈ {∗, 0, γ}. For this, we see that when t = 2, the minimal

ideal Ii,j of R
(q2)
n is the finite field of order q2Di for 0 ≤ i ≤ s− 1 and 0 ≤ j ≤ gi − 1,

where Di =
di

gi
with gi = gcd(2, di). For 0 ≤ i ≤ s− 1, in view of Lemma 2 of Huffman

(2010), we choose primitive elements ρi,0(X), ρi,1(X), · · · , ρi,gi−1(X) of the finite fields

Ii,0, Ii,1, · · · , Ii,gi−1, respectively, satisfying τqj ,1
(

ρi,0(X)
)

= ρi,j(X) for all 0 ≤ j ≤
gi − 1. Let ei,j(X) be the multiplicative identity of Ii,j for each i and j. Recall that when

n is even, there exists an integer i# satisfying 0 ≤ i# ≤ s− 1 and C
(q)
ℓ
i#

= C
(q)
n

2

= {n
2 },

since q is odd. As C
(q)
−ℓ

i#
= C

(q)
ℓ
i#

= {n
2 }, we have µ(i#) = i#.

4.1 Determination of δ-complementary-dual cyclic Fq-linear Fq2-codes

In the following theorem, we explicitly determine bases of all the δ-complementary-dual

cyclic Fq-linear Fq2 -codes of length n for each δ ∈ {∗, 0, γ}, provided gcd(n, q) = 1.

Theorem 4.2: Let t = 2, q be a power of the prime p and n be a positive integer

with gcd(n, q) = 1. Let C be a cyclic Fq-linear Fq2 -code of length n. Let us write

C = C0 ⊕ C1 ⊕ · · · ⊕ Cs−1 and C⊥δ = C
(δ)
0 ⊕ C

(δ)
1 ⊕ · · · ⊕ C

(δ)
s−1, where Ci = C ∩ Ji and

C
(δ)
i = C⊥δ ∩ Ji for 0 ≤ i ≤ s− 1. Then C is δ-complementary-dual if and only if for

each i (0 ≤ i ≤ s− 1), the following hold:

i If i = 0 or i = i# (provided n is even), then

a Ci = {0} or

b Ci = Ji or
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c Ci is a one-dimensional Ki-subspace of Ji with basis {ρi,0(X)k}, where

for δ = ∗ : k does not exist when q is even and 0 ≤ k ≤ q when q is odd.

for δ = 0 : 1 ≤ k ≤ q when q is even, 0 ≤ k ≤ q when q ≡ 1 (mod 4) and

0 ≤ k ≤ q with k 6≡ q+1
4 (mod q+1

2 ) when q ≡ 3 (mod 4).

for δ = γ : k does not exist.

ii If i 6∈ {0, i#}, µ(i) = i and τ1,−1(Ii,0) = Ii,0, then

a Ci = {0} or

b Ci = Ji or

c Ci is a one-dimensional Ki-subspace of Ji with basis as follows:

for δ = ∗ : {ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2 satisfies k 6≡ 0

(mod qdi/2 + 1) when q is even and k 6≡ qdi/2+1
2 (mod qdi/2 + 1) when q is

odd.

for δ = 0 : {ei,0(X)} or {ei,1(X)} or {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k 6≡ 0 (mod qdi/2 − 1) when q is even and

k 6≡ qdi/2−1
2 (mod qdi/2 − 1) when q is odd.

for δ = γ : {ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2 satisfies

k 6≡ 0 (mod qdi/2 + 1).

iii If i 6∈ {0, i#}, µ(i) = i and τ1,−1(Ii,0) = Ii,1, then

a Ci = {0} or

b Ci = Ji or

c Ci is a one-dimensional Ki-subspace of Ji with basis as follows:

for δ = ∗ : {ei,0(X)} or {ei,1(X)} or {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k 6≡ 0 (mod qdi/2 − 1) when q is even and

k 6≡ qdi/2−1
2 (mod qdi/2 − 1) when q is odd.

for δ = 0 : {ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2 satisfies

k 6≡ 0 (mod qdi/2 + 1) when q is even and k 6≡ qdi/2+1
2 (mod qdi/2 + 1)

when q is odd.

for δ = γ : {ei,0(X)} or {ei,1(X)} or {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k 6≡ 0 (mod qdi/2 − 1).

iv When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),0, we have the following:

a If Ci = {0}, then Cµ(i) = {0}.

b If Ci = Ji, then Cµ(i) = Jµ(i).
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c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then Cµ(i) is

also a one-dimensional Kµ(i)-subspace of Jµ(i) having basis {b(X)}, where

for δ = ∗ : b(X) = eµ(i),1(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),0(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); and b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6≡ k (mod qdi − 1) if q is even and

k′ 6≡ k + qdi−1
2 (mod qdi − 1) if q is odd.

for δ = 0 : b(X) = eµ(i),0(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),1(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6≡ qdi − 1− k (mod qdi − 1) if q is even

and k′ 6≡ qdi−1
2 − k (mod qdi − 1) if q is odd.

for δ = γ : b(X) = eµ(i),1(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),0(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); and b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6= k.

v When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),1, we have the following:

a If Ci = {0}, then Cµ(i) = {0}.

b If Ci = Ji, then Cµ(i) = Jµ(i).

c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then Cµ(i) is

also a one-dimensional Kµ(i)-subspace of Jµ(i) having basis {b(X)}, where

for δ = ∗ : b(X) = eµ(i),0(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),1(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); and b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6≡ qdi − 1− k (mod qdi − 1) if q is even

and k′ 6≡ qdi−1
2 − k (mod qdi − 1) if q is odd.

for δ = 0 : b(X) = eµ(i),1(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),0(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); and b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with
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0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6≡ k (mod qdi − 1) if q is even and

k′ 6≡ qdi−1
2 + k (mod qdi − 1) if q is odd.

for δ = γ : b(X) = eµ(i),0(X) or b(X) = eµ(i),0(X) + ρµ(i),1(X)k with

0 ≤ k ≤ qdi − 2 when a(X) = ei,0(X); b(X) = eµ(i),1(X) or

b(X) = eµ(i),0(X) + ρµ(i),1(X)k with 0 ≤ k ≤ qdi − 2 when

a(X) = ei,1(X); and b(X) = eµ(i),0(X) or b(X) = eµ(i),1(X) or b(X) =

eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ 6≡ qdi − 1− k (mod qdi − 1).

vi When µ(i) 6= i and di is odd, we have the following:

a If Ci = {0}, then Cµ(i) = {0}.

b If Ci = Ji, then Cµ(i) = Jµ(i).

c If Ci is a one-dimensional Ki-subspace of Ji having basis {ρi,0(X)k}, then

Cµ(i) is also a one-dimensional Kµ(i)-subspace of Jµ(i) having basis

{ρµ(i),0(X)k
′

}, where 0 ≤ k, k′ ≤ qdi satisfy

for δ = ∗ : k′ 6= k if q is even and k′ 6≡ k + qdi+1
2 (mod qdi + 1) if q is odd.

for δ = 0 : k′ 6≡ qdi + 1− k (mod qdi + 1) if q is even and k′ 6≡ qdi+1
2 − k

(mod qdi + 1) if q is odd.

for δ = γ : k′ 6= k.

Proof: By Lemma 4.2(i), we see that the code C is δ-complementary-dual if and only if

Ci ∩ C
(δ)
i = {0} for 0 ≤ i ≤ s− 1. So for each i (0 ≤ i ≤ s− 1), we need to determine

all Ki-subspaces Ci of Ji satisfying

Ci ∩ C
(δ)
i = {0}, (2)

where dimKi
Ci ≤ 2 and dimKi

C
(δ)
i ≤ 2 for each i.

When µ(i) = i, by Theorem 4.1, we have dimKi
C
(δ)
i = 2− dimKi

Ci. From this,

we see that Ci = {0} and Ci = Ji satisfy (2). Further when dimKi
Ci = 1, we have

dimKi
C
(δ)
i = 1. As Ci ∩ C

(δ)
i is a Ki-subspace of Ci as well as C

(δ)
i , we observe that Ci will

satisfy (2) if and only if Ci 6= C
(δ)
i .

When µ(i) 6= i, by Theorem 4.1, we have dimKµ(i)
C
(δ)
µ(i) = 2− dimKi

Ci. Here we will

determine the pairs (Ci, Cµ(i)) satisfying

Ci ∩ C
(δ)
i = {0} and Cµ(i) ∩ C

(δ)
µ(i) = {0}. (3)

When Ci = {0}, we have C
(δ)
µ(i) = Jµ(i). Here we observe that (3) will hold if and only

if Cµ(i) = {0}, which gives C
(δ)
i = Ji. When Ci = Ji, we have C

(δ)
µ(i) = {0}. In this

case, we note that (3) holds if and only if C
(δ)
i = {0}, which gives Cµ(i) = Jµ(i). When

dimKi
Ci =1, we have dimKµ(i)

C
(δ)
µ(i) = 1. Here we assert that dimKµ(i)

Cµ(i) = 1. This is
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because, if dimKµ(i)
Cµ(i) = 0 or 2, then we have C

(δ)
i = Ji or {0} in the respective cases,

and hence (3) does not hold in both the cases. Therefore, in this case, we need to determine

the pairs (Ci, Cµ(i)) with Ci as a one-dimensional Ki-subspace of Ji and Cµ(i) as a one-

dimensional Kµ(i)-subspace of Jµ(i) satisfying Ci 6= C
(δ)
i and Cµ(i) 6= C

(δ)
µ(i).

From the above discussion, it follows that we need to determine all one-dimensional

Ki-subspaces Ci of Ji satisfying Ci 6= C
(δ)
i for 0 ≤ i ≤ s− 1. To do this, we shall first

consider the case δ = ∗.

i First let i = 0 or i# (if n is even). Here we have di = 1, which gives gi = 1 and

Di = 1 and so Ji = Ii,0 ≃ Fq2 and Ki ≃ Fq. In this case, it is easy to observe that

there are precisely q + 1 distinct one-dimensional Ki-subspaces of Ji having bases

sets as {ρi,0(X)k} for 0 ≤ k ≤ q. Here we assert that Ci = C
(∗)
i holds for all

k (0 ≤ k ≤ q) when q is even and Ci = C
(∗)
i does not hold for any k when q is odd.

To prove this, we see that {ρi,0(X)k} (0 ≤ k ≤ q) is a basis of Ci = C
(∗)
i if and only

if
[

ρi,0(X)k, ρi,0(X)k
]

∗
= 0, by Theorem 4.1. That is, Ci = C

(∗)
i holds if and only if

(

ρi,0(X)k
)

τq,−1

(

ρi,0(X)k
)

+ τq,1
(

ρi,0(X)k
)

τ1,−1

(

ρi,0(X)k
)

= 0. Now by

Lemma 11(i) and (ii) of Huffman (2010), we have τ1,−1

(

ρi,0(X)
)

= ρi,0(X) and

τq,1
(

ρi,0(X)
)

= ρi,0(X)q, which implies that τq,−1

(

ρi,0(X)
)

= τq,1
(

τ1,−1

(

ρi,0(X)
))

= ρi,0(X)q. This gives
(

ρi,0(X)k
)

τq,−1

(

ρi,0(X)k
)

+ τq,1
(

ρi,0(X)k
)

τ1,−1

(

ρi,0(X)k
)

= 2ρi,0(X)(q+1)k. From this, it follows that Ci = C
(∗)
i if

and only if 2ρi,0(X)(q+1)k = 0, which holds if and only if q is even. From this, part

(i) follows.

When di is even, we have gi = 2 and Di = di/2. This implies that Ji = Ii,0 ⊕ Ii,1 and

Ii,0 ≃ Ii,1 ≃ Ki ≃ Fqdi . Here by Theorem 2 of Huffman (2010), it is easy to show that

there are precisely qdi + 1 distinct one-dimensional Ki-subspaces of Ji having bases

sets as {ei,0(X)}, {ei,1(X)} and {ei,0(X) + ρi,1(X)k} for 0 ≤ k ≤ qdi − 2. From now

onwards, throughout the proof, we shall consider the subscript j + 1 of Ii,j+1 modulo 2.

ii Let i 6∈ {0, i#} be such that µ(i) = i and τ1,−1(Ii,0) = Ii,0. In In this case, by

Lemma 10(i) of Huffman (2010), we see that the integer di is even. Here we assert

that Ci = C
(∗)
i holds if and only if Ci has basis sets as {ei,0(X)}, {ei,1(X)} and

{ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2 satisfies k ≡ 0 (mod qdi/2 + 1)

when q is even and k ≡ qdi/2+1
2 (mod qdi/2 + 1) when q is odd. To prove this

assertion, by Lemma 11(iii) of Huffman (2010), we see that for j ∈ {0, 1},

τ1,−1

(

ρi,j(X)
)

= ρi,j(X)q
di/2

. Also we have τq,1(ρi,j(X)) = ρi,j+1(X) and

τq,1(ei,j(X)) = ei,j+1(X). So we get τq,−1

(

ρi,j(X)
)

= τq,1
(

τ1,−1

(

ρi,j(X)
))

=

ρi,j+1(X)q
di/2

and τq,−1

(

ei,j(X)
)

= τq,1
(

τ1,−1

(

ei,j(X)
))

= ei,j+1(X). In view

of this, for j ∈ {0, 1}, we observe that [ei,j(X), ei,j(X)]∗ = 0, so by applying

Theorem 4.1, we see that the subspace Ci with basis {ei,j(X)} satisfies Ci = C
(∗)
i .

Further, for 0 ≤ k ≤ qdi − 2, {ei,0(X) + ρi,1(X)k} is a basis of Ci = C
(∗)
i if and

only if
[

ei,0(X) + ρi,1(X)k, ei,0(X) + ρi,1(X)k
]

∗
= 0 by Theorem 4.1. This holds

if and only if
(

ei,0(X) + ρi,1(X)k
)

τq,−1

(

ei,0(X) + ρi,1(X)k
)

+ τq,1
(

ei,0(X) +

ρi,1(X)k
)

τ1,−1

(

ei,0(X) + ρi,1(X)k
)

= 0 if and only if
(

ei,0(X) + ρi,1(X)k
)

(

ei,1(X) + ρi,0(X)kq
di/2
)

+
(

ei,1(X) + ρi,0(X)k
)(

ei,0(X) + ρi,1(X)kq
di/2
)

= 0
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if and only if ρi,0(X)k + ρi,0(X)kq
di/2

= 0 if and only if k(qdi/2 − 1) ≡ 0

(mod qdi − 1) when q is even and k(qdi/2 − 1) ≡ qdi−1
2 (mod qdi − 1) when q is

odd. From this, part (ii) follows.

iii Let i 6∈ {0, i#} be such that µ(i) = i and τ1,−1(Ii,0) = Ii,1. In this case also, by

Lemma 10(i) of Huffman (2010), we note that the integer di is even. We also note

that τ1,−1(Ii,1) = Ii,0. Further, by Lemma 2 of Huffman (2010), we have

τq,1(Ii,j) = Ii,j+1 for j ∈ {0, 1}. From this, we obtain τq,−1(Ii,j) = Ii,j for

j ∈ {0, 1}. Now by Lemma 11(iv) of Huffman (2010), we have

τq,−1

(

ρi,j(X)
)

= ρi,j(X)q
di/2

and τq,−1

(

ei,j(X)
)

= ei,j(X). As τq2,1 = τ1,1, we

see that τ1,−1

(

ρi,j(X)
)

= τq,1
(

τq,−1

(

ρi,j(X)
))

= ρi,j+1(X)q
di/2

for j ∈ {0, 1}

and τ1,−1

(

ei,j(X)
)

= ei,j+1(X). From this, we see that [ei,j(X), ei,j(X)]∗ 6= 0 for

j ∈ {0, 1}, which implies that the subspace Ci with basis {ei,j(X)} does not satisfy

Ci = C
(∗)
i . Further, working in a similar way as in part (ii), one can prove the desired

result for the subspace Ci with basis {ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2.

iv Let µ(i) 6= i, di be even and τ1,−1(Ii,0) = Iµ(i),0. Here we observe that for

j ∈ {0, 1}, τ1,−1(Ii,j) = Iµ(i),j , which gives τ1,−1

(

Iµ(i),j
)

= Ii,j . From this, we

get τ1,−1

(

ρi,j(X)
)

= ρµ(i),j(X) and τ1,−1

(

ei,j(X)
)

= eµ(i),j(X) for j ∈ {0, 1}.
Further, by applying Lemma 2 of Huffman (2010), for j ∈ {0, 1}, we have

τq,1
(

ei,j(X)
)

= ei,j+1(X), τq,1
(

eµ(i),j(X)
)

= eµ(i),j+1(X) and

τq,1
(

ρi,j(X)
)

= ρi,j+1(X), τq,1
(

ρµ(i),j(X)
)

= ρµ(i),j+1(X) by our choice of

identity elements ei,j(X)’s and primitive elements ρi,j(X)’s. From this, we get

τq,−1

(

ρi,j(X)
)

= τq,1
(

τ1,−1

(

ρi,j(X)
))

= ρµ(i),j+1(X) and

τq,−1

(

ρµ(i),j(X)
)

= τq,1
(

τ1,−1

(

ρµ(i),j(X)
))

= ρi,j+1(X). Besides this, we have

τq,−1

(

ei,j(X)
)

= τq,1
(

τ1,−1

(

ei,j(X)
))

= eµ(i),j+1(X) and

τq,−1

(

eµ(i),j(X)
)

= τq,1
(

τ1,−1

(

eµ(i),j(X)
))

= ei,j+1(X). Using this, it is easy to

observe that
[

eµ(i),j(X), ei,j(X)
]

∗
= 0, [eµ(i),j+1(X), ei,j(X)]∗ 6= 0 and

[

eµ(i),0(X) + ρµ(i),1(X)k, ei,j(X)
]

∗
6= 0 for j ∈ {0, 1}. This, by Theorem 4.1,

implies that if the subspace Ci has basis {ei,j(X)}, then the subspace C
(∗)
µ(i) has basis

{eµ(i),j(X)}. Since the subspace Cµ(i) has to satisfy (3), its basis set has the

following possible choices: {eµ(i),j+1(X)} and {eµ(i),0(X) + ρµ(i),1(X)k}, where

0 ≤ k ≤ qdi − 2. We next observe that if Cµ(i) has basis {eµ(i),j+1(X)}, then C
(∗)
i

has basis {ei,j+1(X)} and this choice satisfies (3). On the other hand, if Cµ(i) has

basis {eµ(i),0(X) + ρµ(i),1(X)k}, then C
(∗)
i has basis {ei,0(X) + ρi,1(X)k

′

},

where k′ ≡ k (mod qdi − 1) when q is even and k′ ≡ k + qdi−1
2 (mod qdi − 1)

when q is odd. Note that in this case also, (3) holds. Further working in a similar

way as above, one can show that if Ci has basis {ei,0(X) + ρi,1(X)k} for

0 ≤ k ≤ qdi − 2, then {eµ(i),0(X) + ρµ(i),1(X)ℓ} is a basis of C
(∗)
µ(i), where

ℓ ≡ k (mod qdi − 1) if q is even and ℓ ≡ k + qdi−1
2 (mod qdi − 1) if q is odd. We

next observe that (3) holds if the subspace Cµ(i) has basis sets as {eµ(i),j(X)} or

{eµ(i),0(X) + ρµ(i),1(X)m} for each j ∈ {0, 1}, where m 6≡ ℓ (mod qdi − 1) when

q is even and m 6≡ ℓ+ qdi−1
2 (mod qdi − 1) when q is odd. These two possible

choices for basis of Cµ(i) give rise to the following choices for basis of C
(∗)
i in the
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respective cases: {ei,j+1(X)} and {ei,0(X) + ρi,1(X)u}, where u ≡ m

(mod qdi − 1) when q is even and u ≡ m+ qdi−1
2 (mod qdi − 1) when q is odd.

One can easily verify that in all these cases, (3) holds. This proves (iv).

v Let µ(i) 6= i, di be even and τ1,−1(Ii,0) = Iµ(i),1. Here we note that

τ1,−1(Ii,j) = Iµ(i),j+1 for j ∈ {0, 1}. Next by Lemma 2 of Huffman (2010), we

have τq,1(Ii,j) = Ii,j+1 for j ∈ {0, 1}. This implies that τ1,−1

(

ρi,j(X)
)

=

ρµ(i),j+1(X), τ1,−1

(

ei,j(X)
)

= eµ(i),j+1(X), τq,1
(

ρi,j(X)
)

= ρi,j+1(X),

τq,1
(

ei,j(X)
)

= ei,j+1(X), τq,1
(

ρµ(i),j(X)
)

= ρµ(i),j+1(X) and τq,1
(

eµ(i),j(X)
)

= eµ(i),j+1(X). From this, it follows that τq,−1

(

ρi,j(X)
)

=

τq,1
(

τ1,−1

(

ρi,j(X)
))

= ρµ(i),j(X) and τq,−1

(

ρµ(i),j(X)
)

= τq,1
(

τ1,−1
(

ρµ(i),j(X)
))

= ρi,j(X). Also we have τq,−1

(

ei,j(X)
)

= τq,1
(

τ1,−1

(

ei,j(X)
))

=

eµ(i),j(X) and τq,−1

(

eµ(i),j(X)
)

= τq,1
(

τ1,−1

(

eµ(i),j(X)
))

= ei,j(X). Now

working in a similar way as in part (iv), part (v) follows.

vi Finally, we assume that µ(i) 6= i and di are odd. Here we have gi = 1,
Ji = Ii,0 ≃ Fq2di and Ki ≃ Fqdi . In this case, we observe that there are precisely

qdi + 1 distinct one-dimensional Ki-subspaces of Ji having basis sets as

{ρi,0(X)k}, where 0 ≤ k ≤ qdi . Further, it is easy to show that if, for 0 ≤ k ≤ qdi ,

the set {ρi,0(X)k} is a basis of Ci, then {ρµ(i),0(X)ℓ} is a basis of C
(∗)
µ(i), where

0 ≤ ℓ ≤ qdi is an integer satisfying ℓ ≡ k (mod qdi + 1) when q is even and

ℓ ≡ k + qdi+1
2 (mod qdi + 1) when q is odd. To prove this, we observe that τq,1 is

an automorphism of Ji of order 2, so we have τq,1
(

ρi,0(X)
)

= ρi,0(X)q
di

and

τq,1
(

ei,0(X)
)

= ei,0(X). Further by applying Lemma 2 of Huffman (2010), we get

τ1,−1

(

ρi,0(X)
)

= ρµ(i),0(X) and τ1,−1

(

ei,0(X)
)

= eµ(i),0(X). This gives

τq,−1

(

ρi,0(X)
)

= τq,1
(

τ1,−1

(

ρi,0(X)
))

= ρµ(i),0(X)q
di

and

τq,−1

(

ei,0(X)
)

= τq,1
(

τ1,−1

(

ei,0(X)
))

= eµ(i),0(X). Now working in a similar

manner as in part (iv), the result follows.

For δ ∈ {0, γ}, working in a similar way as above, the desired result follows. �

In the following theorem, we enumerate all the δ-complementary-dual cyclic Fq-linear

Fq2 -codes of length n for δ ∈ {∗, 0, γ}, provided gcd(n, q) = 1. For this, throughout this

paper, let F be the set consisting of all the fixed points of µ excluding 0 and i# (if n is

even) and M be the set containing one element from each of the transpositions in µ.

Theorem 4.3: Let t = 2, q be a power of the prime p and n be a positive integer coprime

to q. For δ ∈ {∗, 0, γ}, let N be the number of distinct δ-complementary-dual cyclic

Fq-linear Fq2 -codes of length n.

i When δ = ∗, we have N = A
∏

i∈F

(qdi − qdi/2 + 2)
∏

h∈M

(q2dh + qdh + 2), where

A = 2 if q is even and A = (q + 3)gcd(n,2) if q is odd.

ii When δ = 0, we have N = A
∏

i∈F

(qdi − qdi/2 + 2)
∏

h∈M

(q2dh + qdh + 2), where

A = q + 2 if q is even, A = (q + 3)gcd(n,2) if q ≡ 1 (mod 4) and

A = (q + 1)gcd(n,2) if q ≡ 3 (mod 4).
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iii When δ = γ, we have N = A
∏

i∈F

(qdi − qdi/2 + 2)
∏

h∈M

(q2dh + qdh + 2), where

A = 2 if n is odd and A = 4 if n is even.

Proof: For i ∈ F ∪ {0, i#}, let Ni be the number of distinct Ki-subspaces Ci of Ji

satisfying Ci ∩ C
(δ)
i = {0}. For h ∈ M, let Nh be the number of distinct pairs (Ch, Cµ(h))

with Ch as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch ∩

C
(δ)
h = {0} and Cµ(h) ∩ C

(δ)
µ(h) = {0}. Then in view of Lemma 4.2(i), we see that the

number N of distinct δ-complementary-dual cyclic Fq-linear Fq2 -codes of length n is

given by

N =
s−1
∏

i=0

Ni =







N0

∏

i∈F

Ni

∏

h∈M

Nh if n is odd;

N0Ni#
∏

i∈F

Ni

∏

h∈M

Nh if n is even.

Now using Theorem 4.2, the desired result follows. �

4.2 Determination of ∗-self-orthogonal cyclic Fq-linear Fq2-codes

In the following theorem, we explicitly determine bases of all the ∗-self-orthogonal cyclic

Fq-linear Fq2 -codes of length n, provided gcd(n, q) = 1.

Theorem 4.4: Let t = 2, q be a power of the prime p and n be a positive integer coprime

to q. Let C be a cyclic Fq-linear Fq2 -code of length n. Let us write C = C0 ⊕ C1 ⊕ · · · ⊕

Cs−1 and C⊥∗ = C
(∗)
0 ⊕ C

(∗)
1 ⊕ · · · ⊕ C

(∗)
s−1, where Ci = C ∩ Ji and C

(∗)
i = C⊥∗ ∩ Ji for

all 0 ≤ i ≤ s− 1. Then C is ∗-self-orthogonal if and only if for each i (0 ≤ i ≤ s− 1), the

following hold:

i If i = 0 or i = i# (provided n is even), then

a Ci = {0} or

b Ci is a one-dimensional Ki-subspace of Ji having basis {ρi,0(X)k}, where

for q even: 0 ≤ k ≤ q.

for q odd: k does not exist.

ii If i 6∈ {0, i#}, µ(i) = i and τ1,−1(Ii,0) = Ii,0, then

a Ci = {0} or

b Ci is a one-dimensional Ki-subspace of Ji having basis as follows:

for q even: {ei,0(X)} or {ei,1(X)} or {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k ≡ 0 (mod qdi/2 + 1).
for q odd: {ei,0(X)} or {ei,1(X)} or {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k ≡ qdi/2+1
2 (mod qdi/2 + 1).

iii If i 6∈ {0, i#}, µ(i) = i and τ1,−1(Ii,0) = Ii,1, then

a Ci = {0} or
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b Ci is a one-dimensional Ki-subspace of Ji having basis {ei,0(X) + ρi,1(X)k}
with 0 ≤ k ≤ qdi − 2 satisfying

for q even: k ≡ 0 (mod qdi/2 − 1).

for q odd: k ≡ qdi/2−1
2 (mod qdi/2 − 1).

iv When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),0, we have the following:

a If Ci = {0}, then Cµ(i) ⊆ Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then either

Cµ(i) = {0} or Cµ(i) is a one-dimensional Kµ(i)-subspace of Jµ(i) having basis

{b(X)}, where b(X) = eµ(i),0(X) when a(X) = ei,0(X);
b(X) = eµ(i),1(X) when a(X) = ei,1(X);

b(X) = eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying

for q even: k′ = k.

for q odd: k′ ≡ k + qdi−1
2 (mod qdi − 1).

v When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),1, we have the following:

a If Ci = {0}, then Cµ(i) ⊆ Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then either

Cµ(i) = {0} or Cµ(i) is a one-dimensional Kµ(i)-subspace of Jµ(i) having basis

{b(X)}, where

b(X) = eµ(i),1(X) when a(X) = ei,0(X);
b(X) = eµ(i),0(X) when a(X) = ei,1(X);

b(X) = eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying

for q even: k′ ≡ qdi − 1− k (mod qdi − 1).

for q odd: k′ ≡ qdi−1
2 − k (mod qdi − 1).

vi When µ(i) 6= i and di is odd, we have the following:

a If Ci = {0}, then Cµ(i) ⊆ Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {ρi,0(X)k} with

0 ≤ k ≤ qdi , then either Cµ(i) = {0} or Cµ(i) is a one-dimensional

Kµ(i)-subspace of Jµ(i) having basis {ρµ(i),0(X)k
′

} with 0 ≤ k′ ≤ qdi

satisfying

for q even: k′ = k.

for q odd: k′ ≡ k + qdi+1
2 (mod qdi + 1).
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Proof: By Lemma 4.2(ii), we see that C is ∗-self-orthogonal if and only if Ci ⊆ C
(∗)
i for

all 0 ≤ i ≤ s− 1. So for each i (0 ≤ i ≤ s− 1), we need to determine all Ki-subspaces

Ci of Ji satisfying

Ci ⊆ C
(∗)
i , (4)

where dimKi
Ci ≤ 2 and dimKi

C
(∗)
i ≤ 2 for each i. It is clear that Ci = {0} satisfies (4).

First suppose that i is an integer satisfying 0 ≤ i ≤ s− 1 and µ(i) = i. Here we

observe that when Ci = Ji, we have C
(∗)
i = {0} and so (4) is not satisfied. Further, by

Theorem 4.1, we have dimKi
C
(∗)
i = 2− dimKi

Ci. From this, we see that when dimKi
Ci =

1, we have dimKi
C
(∗)
i = 1 and so Ci satisfies (4) if and only if Ci = C

(∗)
i holds.

Next suppose that i is an integer satisfying 0 ≤ i ≤ s− 1 and µ(i) 6= i. Here we have

dimKµ(i)
C
(∗)
µ(i) = 2− dimKi

Ci. Here we need to determine the pairs (Ci, Cµ(i)) with Ci as a

Ki-subspace of Ji and Cµ(i) as a Kµ(i)-subspace of Jµ(i) satisfying

Ci ⊆ C
(∗)
i and Cµ(i) ⊆ C

(∗)
µ(i). (5)

In this case, when Ci = {0}, we have C
(∗)
µ(i) = Jµ(i) and so (5) holds if and only if Cµ(i) is

any Kµ(i)-subspace of Jµ(i). When Ci = Ji, we have C
(∗)
µ(i) = {0}. In this case, (5) holds

if and only if Cµ(i) = {0}. When dimKi
Ci = 1, we have dimKµ(i)

C
(∗)
µ(i) = 1. Here (5) holds

if and only if either Cµ(i) = {0} or Cµ(i) is a one-dimensional Kµ(i)-subspace of Jµ(i)

satisfying Cµ(i) = C
(∗)
µ(i). Now it remains to determine all one-dimensional Ki-subspaces

Ci of Ji satisfying Ci = C
(∗)
i for 0 ≤ i ≤ s− 1, which can be determined working in a

similar manner as in Theorem 4.2. �

In the following theorem, we enumerate all the ∗-self-orthogonal cyclic Fq-linear Fq2 -

codes of length n. For this, we recall that F is the set consisting of all the fixed points of

µ excluding 0 and i# (if n is even) and M is the set containing exactly one element from

each of the transpositions in µ.

Theorem 4.5: Let t = 2, q be a power of the prime p and n be a positive integer

coprime to q.

i The number of distinct ∗-self-orthogonal cyclic Fq-linear Fq2 -codes of length n is

given by A
∏

i∈F

(qdi/2 + 2)
∏

h∈M

(3qdh + 6), where A = q + 2 if q is even and A = 1 if

q is odd.

ii The number of distinct ∗-self-orthogonal cyclic Fq-linear Fq2 -codes of length n

generated by a single codeword is given by A
∏

i∈F

(qdi/2 + 2)
∏

h∈M

(3qdh + 4), where

A = q + 2 if q is even and A = 1 if q is odd.

Proof: i For i ∈ F ∪ {0, i#}, let Mi be the number of distinct Ki-subspaces Ci of Ji

satisfying Ci ⊆ C
(∗)
i . For h ∈ M, let Mh be the number of distinct pairs (Ch, Cµ(h))
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with Ch as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying

Ch ⊆ C
(∗)
h and Cµ(h) ⊆ C

(∗)
µ(h). Then in view of Lemma 4.2(ii), we see that the number

M of distinct ∗-self-orthogonal cyclic Fq-linear Fq2 -codes of length n is given by

M =

s−1
∏

i=0

Mi =







M0

∏

i∈F

Mi

∏

h∈M

Mh if n is odd;

M0Mi#
∏

i∈F

Mi

∏

h∈M

Mh if n is even.

Now using Theorem 4.4, the result follows.

ii By Lemma 6 of Huffman (2010), we see that every cyclic Fq-linear Fq2 -code can be

generated by a single codeword provided dimKi
Ci ≤ 1 with equality holding for at

least one i, which implies that Ci 6= Ji for 0 ≤ i ≤ s− 1. Now working as in part (i)

and applying Theorem 4.4, part (ii) follows.
�

4.3 Determination of ∗-self-dual cyclic Fq-linear Fq2-codes

In the following theorem, we determine bases of all the ∗-self-dual cyclic Fq-linear Fq2 -

codes of length n when q is an even prime power and establish the non-existence of such

codes when q is an odd prime power, provided gcd(n, q) = 1.

Theorem 4.6: Let t = 2, q be a power of the prime p and n be a positive integer coprime

to q. Let C be a cyclic Fq-linear Fq2 -code of length n. Let C = C0 ⊕ C1 ⊕ · · · ⊕ Cs−1 and

C⊥∗ = C
(∗)
0 ⊕ C

(∗)
1 ⊕ · · · ⊕ C

(∗)
s−1, where Ci = C ∩ Ji and C

(∗)
i = C⊥∗ ∩ Ji for all 0 ≤ i ≤

s− 1.
When q is an odd prime power, there does not exist any ∗-self-dual cyclic Fq-linear Fq2 -

code of length n.

When q is an even prime power, the code C is ∗-self-dual if and only if for each i (0 ≤ i ≤
s− 1), the following hold:

i If i = 0, then Ci is a one-dimensional Ki-subspace of Ji having basis {ρi,0(X)k},
where 0 ≤ k ≤ q.

ii If 1 ≤ i ≤ s− 1 is such that µ(i) = i and τ1,−1(Ii,0) = Ii,0, then Ci is a

one-dimensional Ki-subspace of Ji having basis {ei,0(X)} or {ei,1(X)} or

{ei,0(X) + ρi,1(X)k}, where 0 ≤ k ≤ qdi − 2 satisfies k ≡ 0 (mod qdi/2 + 1).

iii If 1 ≤ i ≤ s− 1 is such that µ(i) = i and τ1,−1(Ii,0) = Ii,1, then Ci is a

one-dimensional Ki-subspace of Ji having basis {ei,0(X) + ρi,1(X)k}, where

0 ≤ k ≤ qdi − 2 satisfies k ≡ 0 (mod qdi/2 − 1).

iv When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),0, we have the following:

a If Ci = {0}, then Cµ(i) = Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then Cµ(i) is

also a one-dimensional Kµ(i)-subspace of Jµ(i) with basis {b(X)}, where

b(X) = eµ(i),0(X) when a(X) = ei,0(X);
b(X) = eµ(i),1(X) when a(X) = ei,1(X); and
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b(X) = eµ(i),0(X) + ρµ(i),1(X)k when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k ≤ qdi − 2.

v When µ(i) 6= i, di is even and τ1,−1(Ii,0) = Iµ(i),1, we have the following:

a If Ci = {0}, then Cµ(i) = Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {a(X)}, then Cµ(i) is

also a one-dimensional Kµ(i)-subspace of Jµ(i) with basis {b(X)}, where

b(X) = eµ(i),1(X) when a(X) = ei,0(X);
b(X) = eµ(i),0(X) when a(X) = ei,1(X);

b(X) = eµ(i),0(X) + ρµ(i),1(X)k
′

when a(X) = ei,0(X) + ρi,1(X)k with

0 ≤ k, k′ ≤ qdi − 2 satisfying k′ ≡ qdi − 1− k (mod qdi − 1).

vi When µ(i) 6= i and di is odd, we have the following:

a If Ci = {0}, then Cµ(i) = Jµ(i).

b If Ci = Ji, then Cµ(i) = {0}.

c If Ci is a one-dimensional Ki-subspace of Ji having basis {ρi,0(X)k} with

0 ≤ k ≤ qdi , then Cµ(i) is also a one-dimensional Kµ(i)-subspace of Jµ(i) with

basis {ρµ(i),0(X)k}.

Proof: In view of Lemma 4.2(iii), we see that the code C is ∗-self-dual if and only if Ci =

C
(∗)
i for 0 ≤ i ≤ s− 1. Further, by Theorem 4.1, we have dimKi

Ci + dimKµ(i)
C
(∗)
µ(i) = 2

for all 0 ≤ i ≤ s− 1. From this, we see that dimKi
Ci = 1 for all i satisfying µ(i) = i,

while both the dimensions dimKi
Ci and dimKµ(i)

Cµ(i) are at most 2 when µ(i) 6= i.

Now by Theorem 4.2(i), we see that when q is odd, there does not exist any one-

dimensional Ki-subspace Ci of Ji satisfying Ci = C
(∗)
i for i = 0 or i = i# (if n is even).

From this, it follows that when q is an odd prime power, there does not exist any ∗-self-dual

cyclic Fq-linear Fq2 -code.

Next let q be an even prime power. Here we must have dimKi
Ci = 1 for all i satisfying

µ(i) = i and both dimKi
Ci and dimKµ(i)

Cµ(i) are at most 2 when µ(i) 6= i. Now working

in a similar way as in Theorem 4.2, the result follows immediately. �

In the following theorem, we will count all the ∗-self-dual cyclic Fq-linear Fq2 -codes of

length n provided gcd(n, q) = 1.

Theorem 4.7: Let t = 2, q be a power of the prime p and n be a positive integer coprime

to q.

i When q is odd, there does not exist any ∗-self-dual cyclic Fq-linear Fq2 -code of

length n. When q is even, there are precisely (q + 1)
∏

i∈F

(qdi/2 + 1)
∏

h∈M

(qdh + 3)

distinct ∗-self-dual cyclic Fq-linear Fq2 -codes of length n.

ii When q is odd, there does not exist any ∗-self-dual cyclic Fq-linear Fq2 -code of

length n generated by a single codeword. When q is even, the number of distinct
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∗-self-dual cyclic Fq-linear Fq2 -codes of length n generated by a single codeword is

given by (q + 1)
∏

i∈F

(qdi/2 + 1)
∏

h∈M

(qdh + 1).

Proof: i For i ∈ F ∪ {0, i#}, let M̂i be the number of distinct Ki-subspaces Ci of Ji

satisfying Ci = C
(∗)
i . For h ∈ M, let M̂h be the number of distinct pairs (Ch, Cµ(h))

with Ch as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying

Ch = C
(∗)
h and Cµ(h) = C

(∗)
µ(h). Then in view of Lemma 4.2(iii), we see that the

number M̂ of distinct ∗-self-dual cyclic Fq-linear Fq2 -codes of length n is given by

M̂ =

s−1
∏

i=0

M̂i =











M̂0

∏

i∈F

M̂i

∏

h∈M

M̂h if n is odd;

M̂0M̂i#
∏

i∈F

M̂i

∏

h∈M

M̂h if n is even.

Now using Theorem 4.6, the result follows.

ii By Lemma 6 of Huffman (2010), we see that every cyclic Fq-linear Fq2 -code can be

generated by a single codeword provided dimKi
Ci ≤ 1 with equality holding for at

least one i, which implies that Ci 6= Ji for 0 ≤ i ≤ s− 1. Now using Theorem 4.6,

the desired result follows.
�

4.4 Enumeration of ∗-self-orthogonal and ∗-self-dual cyclic Fq-linear Fqt-codes

In this section, we assume that t ≥ 3 is an integer satisfying t 6≡ 1(mod p). Here we will

enumerate all the ∗-self-orthogonal and ∗-self-dual cyclic Fq-linear Fqt -codes of length n,

where gcd(n, q) = 1.
First of all, we proceed to enumerate all the ∗-self-orthogonal cyclic Fq-linear Fqt -codes

of length n. For this, let C be a cyclic Fq-linear Fqt -code of length n. Let us write

C = C0 ⊕ C1 ⊕ · · · ⊕ Cs−1 and C⊥∗ = C
(∗)
0 ⊕ C

(∗)
1 ⊕ · · · ⊕ C

(∗)
s−1, where Ci = C ∩ Ji and

C
(∗)
i = C⊥∗ ∩ Ji for all 0 ≤ i ≤ s− 1. Then by Lemma 4.2(ii), we see that C is ∗-self-

orthogonal if and only if Ci ⊆ C
(∗)
i for all 0 ≤ i ≤ s− 1. Further, for i ∈ F ∪ {0, i#},

let N̂i denote the number of Ki-subspaces Ci of Ji satisfying Ci ⊆ C
(∗)
i . For h ∈ M,

let N̂h denote the number of distinct pairs (Ch, Cµ(h)) with Ch as a Kh-subspace of Jh

and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch ⊆ C
(∗)
h and Cµ(h) ⊆ C

(∗)
µ(h). Then by

Lemma 4.2(ii), the total number N̂ of distinct ∗-self-orthogonal cyclic Fq-linear Fqt -codes

of length n is given by

N̂ =











N̂0N̂i#
∏

i∈F

N̂i

∏

h∈M

N̂h if n is even;

N̂0

∏

i∈F

N̂i

∏

h∈M

N̂h if n is odd.
(6)

In the following theorem, we enumerate all the ∗-self-orthogonal cyclic Fq-linear Fqt-

codes of length n, provided gcd(n, q) = 1.
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Theorem 4.8: Let q be a power of the prime p, n be a positive integer coprime to q and

t ≥ 3 be an integer satisfying t 6≡ 1(mod p). Then the number N̂ of distinct

∗-self-orthogonal cyclic Fq-linear Fqt-codes of length n is given by

i





t/2
∑

k=0

[

t/2

k

]

q

k−1
∏

j=0

(q
t−2j

2 + 1)





∏

i∈F





t/2
∑

r=0

[

t/2

r

]

qdi

r−1
∏

ℓ=0

(

q
di(t−2ℓ−1)

2 + 1
)





∏

h∈M

(

t
∑

u=0

[

t

u

]

qdh

t−u
∑

b=0

[

t− u

b

]

qdh

)

when both q, t are even.

ii Agcd(n,2)
∏

i∈F





(t−1)/2
∑

r=0

[

(t− 1)/2

r

]

qdi

r−1
∏

ℓ=0

(

q
di(t−2ℓ)

2 + 1
)





∏

h∈M

(

t
∑

u=0

[

t

u

]

qdh

t−u
∑

b=0

[

t− u

b

]

qdh

)

, where

A =

(t−1)/2
∑

k=0

[

(t− 1)/2

k

]

q

k−1
∏

j=0

(

q
t−2j−1

2 + 1
)

when both q, t are odd.

iii Agcd(n,2)
∏

i∈F





t/2
∑

r=0

[

t/2

r

]

qdi

r−1
∏

ℓ=0

(

q
di(t−2ℓ−1)

2 + 1
)





∏

h∈M

(

t
∑

u=0

[

t

u

]

qdh

t−u
∑

b=0

[

t− u

b

]

qdh

)

, where

A =

t/2
∑

k=0

[

t/2

k

]

q

k−1
∏

j=0

(

q
t−2j−2

2 + 1
)

when q ≡ 3(mod 4) and t ≡ 2(mod 4).

iv Agcd(n,2)
∏

i∈F





t/2
∑

r=0

[

t/2

r

]

qdi

r−1
∏

ℓ=0

(

q
di(t−2ℓ−1)

2 + 1
)





∏

h∈M

(

t
∑

u=0

[

t

u

]

qdh

t−u
∑

b=0

[

t− u

b

]

qdh

)

, where

A =

(t−2)/2
∑

k=0

[

(t− 2)/2

k

]

q

k−1
∏

j=0

(

q
t−2j

2 + 1
)

when q ≡ 3(mod 4) and t ≡ 0(mod 4)

or q ≡ 1(mod 4) and t is even.

In order to prove this theorem, let [·, ·]∗ ↾Ji×Ji
denote the restriction of the sesquilinear

form [·, ·]∗ to Ji × Ji for 0 ≤ i ≤ s− 1. By Lemma 3.3(v), it is clear that the sesquilinear

form [·, ·]∗ ↾Ji×Ji
is reflexive for each i. Further, we observe the following:

Lemma 4.3: Let 0 ≤ i ≤ s− 1 be an integer. Then the sesquilinear form [·, ·]∗ ↾Ji×Ji

is non-degenerate if and only if µ(i) = i if and only if i ∈ F ∪ {0} or i ∈ F ∪ {0, i#}
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accordingly as n is odd or even. Furthermore, for all i (0 ≤ i ≤ s− 1) satisfying µ(i) = i,

the sesquilinear form [·, ·]∗ ↾Ji×Ji
is Hermitian if i ∈ F and is symmetric otherwise.

Proof: Working in a similar manner as in Lemma 13 of Huffman (2010) and using Lemma

3.3(v), the result follows. �

In the following lemma, we will determine the numbers N̂i for all i satisfying 0 ≤ i ≤
s− 1 and µ(i) = i.

Lemma 4.4: Let t ≥ 3 be an integer satisfying t 6≡ 1(mod p) and i (0 ≤ i ≤ s− 1) be

an integer satisfying µ(i) = i. Then the following hold:

i For i ∈ F, we have N̂i =



























t/2
∑

k=0

[

t/2

k

]

qdi

k−1
∏

ℓ=0

(

q
di(t−2ℓ−1)

2 + 1
)

if t is even;

(t−1)/2
∑

k=0

[

(t− 1)/2

k

]

qdi

k−1
∏

ℓ=0

(

q
di(t−2ℓ)

2 + 1
)

if t is odd.

ii For i = 0 or i = i# (provided n is even), we have

N̂i =



























































































(t−1)/2
∑

k=0

[

(t− 1)/2

k

]

q

k−1
∏

j=0

(

q
t−2j−1

2 + 1
)

if q is odd and t is odd;

t/2
∑

k=0

[

t/2

k

]

q

k−1
∏

j=0

(

q
t−2j−2

2 + 1
)

if q ≡ 3(mod 4) and t ≡ 2(mod 4);

(t−2)/2
∑

k=0

[

(t− 2)/2

k

]

q

k−1
∏

j=0

(

q
t−2j

2 + 1
)

if q ≡ 3(mod 4) and t ≡ 0(mod 4)

or q ≡ 1(mod 4) and t is even;

t/2
∑

k=0

[

t/2

k

]

q

k−1
∏

j=0

(

q
t−2j

2 + 1
)

if q is even and t is even.

Proof: For 0 ≤ i ≤ s− 1 and µ(i) = i, we recall that the number N̂i equals the number

of distinct Ki-subspaces Ci of Ji satisfying Ci ⊆ C
(∗)
i .

i When i ∈ F, by Lemma 4.3, we see that [·, ·]∗ ↾Ji×Ji
is a non-degenerate, reflexive

and Hermitian sesquilinear form. Therefore (Ji, [·, ·]∗ ↾Ji×Ji
) is a unitary space

having dimension t over Ki ≃ Fqdi . By Taylor (1992, p.116), the Witt index m of Ji

is given by

m =

{

t
2 if t is even;

t−1
2 if t is odd.

In this case, from Lemma 10(i) of Huffman (2010), we note that di is an even integer.

Now by Exercise 11.3 of Taylor (1992, p.174), for 0 ≤ k ≤ m, the number of distinct
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k-dimensional Ki-subspaces Ci of Ji satisfying Ci ⊆ C
(∗)
i (or equivalently the

number of distinct k-dimensional totally isotropic Ki-subspaces of Ji) is given by
[

m
k

]

qdi

k−1
∏

j=0

(

qdi(m−ǫ−j) + 1
)

, where ǫ = 1/2 if t is even and ǫ = −1/2 if t is odd.

From this, part (i) follows.

ii Let i = 0 or i ∈ {0, i#} accordingly as n is odd or even. By Lemma 4.3, we see that

[·, ·]∗ ↾Ji×Ji
is a non-degenerate, reflexive and symmetric sesquilinear form. Here

we will consider the following two cases separately: I. q is odd and II. q is even.

Case I. Let q be odd. In this case, di = 1 and so Ki ≃ Fq. Here it is easy to see that

the map Qi : Ji → Ki, defined as Qi

(

u(X)
)

= 1
2 [u(X), u(X)]∗ for all u(X) ∈ Ji,

is a quadratic map on Ji. That is, (Ji, Qi) is a non-degenerate quadratic space

having dimension t over Ki. Further, working in a similar manner as in the

discussion of Theorem 16 of Huffman (2010), the Witt index m of the quadratic

space (Ji, Qi) is given by

m =







t−1
2 if t is odd;

t−2
2 if t is even and q ≡ 1 (mod 4) or t ≡ 0 (mod 4) and q ≡ 3 (mod 4);
t
2 if t ≡ 2 (mod 4) and q ≡ 3 (mod 4).

Further, using Exercise 11.3 of Taylor (1992, p.174), we see that for 0 ≤ k ≤ m, the

number of distinct k-dimensional Ki-subspaces Ci of Ji satisfying Ci ⊆ C
(∗)
i (or

equivalently, the number of k-dimensional totally singular Ki-subspaces of Ji) is

given by
[

m
k

]

q

k−1
∏

j=0

(

qdi(m−ǫ−j) + 1
)

, where m is the Witt index of Ji and

ǫ = 2m− t+ 1. From this, we get the desired result.

Case II. Let q be even. In this case, n must be odd and i = 0. Further, as

t 6≡ 1(mod p), the integer t must be even. By Huffman (2010, p.264), we see that

J0 = {ah(X) : a ∈ Fqt} ≃ Fqt and K0 = {αh(X) : α ∈ Fq} ≃ Fq, where

h(X) = (1 +X +X2 + · · ·+Xn−1). We next observe that [ah(X), bh(X)]∗ =
Trq,t

(

aφ(b)
)

h(X) for all ah(X), bh(X) ∈ J0. Since h(X) 6= 0, we observe that if

the vectors ah(X), bh(X) ∈ J0 are orthogonal with respect to [·, ·]∗ ↾J0×J0
, then

the corresponding vectors a, b ∈ Fqt are orthogonal with respect to (·, ·)∗ on Fqt and

vice versa. So the number of distinct K0-subspaces C0 of J0 satisfying C0 ⊆ C
(∗)
0 is

equal to the total number of totally isotropic Fq-subspaces of Fqt with respect to

(·, ·)∗. Further, by Lemma 3.2, we see that (·, ·)∗ is a non-degenerate, reflexive and

alternating bilinear form on Fqt , i.e., (Fqt , (·, ·)∗) is a symplectic space having

dimension t over Fq and the Witt index of Fqt is t
2 . Now by using Exercise 11.3 of

Taylor (1992, p.174), for 0 ≤ k ≤ t
2 , the number of distinct k-dimensional totally

isotropic Fq-subspaces of Fqt is given by
[

t/2
k

]

q

k−1
∏

j=0

(

q
t−2j

2 + 1
)

, from which the

desired result follows immediately. �

In the following lemma, we consider the case h ∈ M and count the pairs (Ch, Cµ(h)) with

Ch as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch ⊆ C
(∗)
h

and Cµ(h) ⊆ C
(∗)
µ(h).
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Lemma 4.5: For h ∈ M, the number N̂h of distinct pairs (Ch, Cµ(h)) with Ch as a Kh-

subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch ⊆ C
(∗)
h and Cµ(h) ⊆

C
(∗)
µ(h) is given by N̂h =

t
∑

k=0

[

t

k

]

qdh

t−k
∑

j=0

[

t− k

j

]

qdh

.

Proof: Its proof is similar to that of Lemma 12 of Huffman (2010). �

Proof of Theorem 4.8: It follows immediately from Lemmas 4.4 and 4.5, and

using (6). �

Next we proceed to count all the ∗-self-dual cyclic Fq-linear Fqt-codes of length n. For

all i satisfying 0 ≤ i ≤ s− 1 and µ(i) = i, let ˜Ni denote the number of Ki-subspaces Ci of

Ji satisfying Ci = C
(∗)
i . For h ∈ M, let ˜Nh denote the number of pairs (Ch, Cµ(h)) with Ch

as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch = C
(∗)
h and

Cµ(h) = C
(∗)
µ(h). Then by Lemma 4.2(iii), the total number of ∗-self-dual cyclic Fq-linear

Fqt -codes of length n is given by

˜N =











˜N0
˜Ni#

∏

i∈F

˜Ni

∏

h∈M

˜Nh if n is even;

˜N0

∏

i∈F

˜Ni

∏

h∈M

˜Nh if n is odd.
(7)

In the following theorem, we enumerate all the ∗-self-dual cyclic Fq-linear Fqt-codes of

length n, provided gcd(n, q) = 1.

Theorem 4.9: Let q be a power of the prime p, n be a positive integer coprime to q and

t ≥ 3 be an integer satisfying t 6≡ 1(mod p).

i When t is odd or q ≡ 3(mod 4) and t ≡ 0(mod 4) or q ≡ 1(mod 4) and t is even,

there does not exist any ∗-self-dual cyclic Fq-linear Fqt -code of length n.

ii When q ≡ 3(mod 4) and t ≡ 2(mod 4), the number ˜N of distinct ∗-self-dual cyclic

Fq-linear Fqt -codes of length n is given by

˜N = agcd(n,2)
∏

i∈F





(t−2)/2
∏

j=0

(

q
di(t−2j−1)

2 + 1
)





∏

h∈M

(

t
∑

k=0

[

t

k

]

qdh

)

,

where a =

(t−2)/2
∏

ℓ=0

(

q
t−2ℓ−2

2 + 1
)

.

iii When both t and q are even, the number ˜N of distinct ∗-self-dual cyclic Fq-linear

Fqt -codes of length n is given by

˜N =

(t−2)/2
∏

j=0

(

q
t−2j

2 + 1
)

∏

i∈F





(t−2)/2
∏

j=0

(

q
di(t−2j−1)

2 + 1
)





∏

h∈M

(

t
∑

k=0

[

t

k

]

qdh

)

.

In order to prove this theorem, we need to prove the following two lemmas:
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Lemma 4.6: Let q be a power of the prime p, n be a positive integer coprime to q and

t ≥ 3 be an integer satisfying t 6≡ 1(mod p). Let i be an integer satisfying 0 ≤ i ≤ s− 1
and µ(i) = i.

i If i ∈ F, then we have

˜Ni =















(t−2)/2
∏

ℓ=0

(

q
di(t−2ℓ−1)

2 + 1
)

if t is even;

0 if t is odd.

ii If i = 0 or i = i# (provided n is even), then we have

˜Ni =



















































(t−2)/2
∏

j=0

(

q
t−2j−2

2 + 1
)

if q ≡ 3(mod 4) and t ≡ 2(mod 4);

0 if q ≡ 3(mod 4) and t ≡ 0(mod 4) or q ≡ 1(mod 4)
and t is even or t is odd;

(t−2)/2
∏

j=0

(

q
t−2j

2 + 1
)

if both q and t are even.

Proof: For all i satisfying 0 ≤ i ≤ s− 1 and µ(i) = i, the number ˜Ni equals the number

of Ki-subspaces Ci of Ji satisfying Ci = C
(∗)
i . Further, by Theorem 4.1, we see that if the

Ki-dimension of Ci is ki, then the Ki-dimension of C
(∗)
i = C

(∗)
µ(i) is t− ki, as µ(i) = i. This

implies that ki = t− ki for all i satisfying µ(i) = i. From this, it follows that there does

not exist any Ki-subspace Ci of Ji satisfying Ci = C
(∗)
i when t is odd and the dimension of

the Ki-subspace Ci of Ji satisfying Ci = C
(∗)
i must be t

2 when t is even. Therefore ˜Ni = 0
when t is odd. So from now onwards, we assume that t is an even integer. In this case, if

there exists a Ki-subspace Ci of Ji satisfying Ci = C
(∗)
i , then dimKi

Ci =
t
2 .

i First let i ∈ F. Here by Lemma 4.3, we see that [·, ·]∗ ↾Ji×Ji
is a non-degenerate,

reflexive and Hermitian sesquilinear form. Therefore (Ji, [·, ·]∗ ↾Ji×Ji
) is a unitary

space having dimension t over Ki ≃ Fqdi . So it suffices to count all the
t
2 -dimensional Ki-subspaces Ci of Ji satisfying Ci = C

(∗)
i , which equals the number

of distinct totally isotropic t
2 -dimensional Ki-subspaces of Ji. By Taylor (1992,

p.116), as t is even, the Witt index m of Ji is t
2 . By Lemma 10(i) of Huffman

(2010), we also note that di is an even integer. Now using Exercise 11.3 of Taylor

(1992, p.174), we see that the number of distinct t
2 -dimensional totally isotropic

Ki-subspaces Ci of Ji is given by
[

t/2
t/2

]

qdi

(t−2)/2
∏

j=0

(

q
di(t−2j−1)

2 + 1
)

.

ii Next let i = 0 or i ∈ {0, i#} accordingly as n is odd or even. Here we will consider

the following two cases separately: I. q is odd and II. q is even.

Case I. Let q be odd. In this case, we have di = 1, which implies that Ki ≃ Fq. It is

easy to see that the map Qi : Ji → Ki, defined as Qi

(

u(X)
)

= 1
2 [u(X), u(X)]∗ for
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all u(X) ∈ Ji, is a quadratic map on Ji. That is, (Ji, Qi) is a non-degenerate

quadratic space having dimension t over Ki. So it suffices to count all the
t
2 -dimensional Ki-subspaces Ci of Ji satisfying Ci = C

(∗)
i , that is, we need to

enumerate all the totally singular t
2 -dimensional Ki-subspaces Ci of Ji. Now

working in a similar manner as in the discussion of Theorem 16 of Huffman (2010),

we see that the Witt index m of (Ji, Qi) is given by

m =

{

t−2
2 if t is even and q ≡ 1 (mod 4) or t ≡ 0 (mod 4) and q ≡ 3 (mod 4);
t
2 if t ≡ 2 (mod 4) and q ≡ 3 (mod 4).

Now as the Witt index m is equal to the dimension of a maximal totally singular

Ki-subspace of Ji, we must have ˜Ni = 0 when t is even and q ≡ 1 (mod 4) or

t ≡ 0 (mod 4) and q ≡ 3 (mod 4). On the other other hand, when t ≡ 2 (mod 4) and

q ≡ 3 (mod 4), using Exercise 11.3 of Taylor (1992, p.174), we see that the number

of t
2 -dimensional totally singular Ki-subspaces Ci of Ji is given by

[

t/2
t/2

]

q

(t−2)/2
∏

j=0

(

q
t−2j−2

2 + 1
)

, which equals
(t−2)/2
∏

j=0

(

q
t−2j−2

2 + 1
)

.

Case II. Next let q be even. In this case, n must be odd and i = 0. Here also,

working as in Lemma 4.4(ii), we see that the total number of totally isotropic
t
2 -dimensional K0-subspaces J0 is same as the number of distinct totally isotropic
t
2 -dimensional Fq-subspaces of Fqt with respect to (·, ·)∗. Further, by Lemma 3.2,

we see that (·, ·)∗ is a non-degenerate, reflexive and alternating bilinear form on Fqt ,

i.e., (Fqt , (·, ·)∗) is a symplectic space having dimension t over Fq and the Witt index

of Fqt is t
2 . Now using Exercise 11.3 of Taylor (1992, p.174), we see that the number

of distinct totally isotropic t
2 -dimensional Fq-subspaces of Fqt is given by

[

t/2
t/2

]

q

(t−2)/2
∏

j=0

(

q
t−2j

2 + 1
)

=

(t−2)/2
∏

j=0

(

q
t−2j

2 + 1
)

.
�

Lemma 4.7: Let q be a power of the prime p, n be a positive integer coprime to q and

t ≥ 3 be an integer satisfying t 6≡ 1(mod p). For h ∈ M, we have ˜Nh =

t
∑

k=0

[

t

k

]

qdh

.

Proof: For each h ∈ M, the number ˜Nh equals the number of distinct pairs (Ch, Cµ(h))
with Ch as a Kh-subspace of Jh and Cµ(h) as a Kµ(h)-subspace of Jµ(h) satisfying Ch =

C
(∗)
h and Cµ(h) = C

(∗)
µ(h). Now for a given Kh-subspace Ch of Jh, by Theorem 4.1, we have

C
(∗)
µ(h) = {a(X) ∈ Jµ(h) : [a(X), c(X)]∗ = 0 for all c(X) ∈ Ch} and thus Cµ(h) = C

(∗)
µ(h)

can be uniquely determined for a given choice of Ch. In view of this, we observe that the

number ˜Nh equals the number of Kh-subspaces of Jh. Now as dimKh
Jh = t and Kh is

the finite field of order qdh , using Lemma 4 of Huffman (2010), we see that the number of

k-dimensional Kh-subspaces of Jh is given by
[

t
k

]

qdh
for each k (0 ≤ k ≤ t). From this,

we obtain ˜Nh =

t
∑

k=0

[

t

k

]

qdh

. �

Proof of Theorem 4.9: It follows immediately from Lemmas 4.6 and 4.7, and

using (7). �
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