
Int. J. High Performance Computing and Networking, Vol. 13, No. 1, 2019 35

Copyright © 2019 Inderscience Enterprises Ltd.

Efficient implementation of OpenACC cache
directive on NVIDIA GPUs

Ahmad Lashgar*
ECE Department,
University of Victoria,
Engineering Lab Wing Building,
Room A220, Victoria, BC, Canada
Email: lashgar@uvic.ca
*Corresponding author

Amirali Baniasadi
ECE Department,
University of Victoria,
Engineering Office Wing Building,
Room 323, Victoria, BC, Canada
Email: amiralib@uvic.ca

Abstract: OpenACC’s programming model presents a simple interface to programmers, offering
a trade-off between performance and development effort. OpenACC relies on compiler
technologies to generate efficient code and optimise the performance. The cache directive is
among the challenges to implement directives. The cache directive allows the programmer to
utilise the accelerator’s hardware- or software-managed caches by passing hints to the compiler.
In this paper, we investigate the implementation aspect of cache directive under NVIDIA-like
GPUs and propose optimisations for the CUDA backend. We use CUDA’s shared memory as the
software-managed cache space. We first show that a straightforward implementation can be very
inefficient, and undesirably downgrade performance. We investigate the differences between this
implementation and hand-written CUDA alternatives and introduce the following optimisations
to bridge the performance gap between the two: 1) improving occupancy by sharing the cache
among several parallel threads; 2) optimising cache fetch and write routines via parallelisation
and minimising control flow. Investigating three test cases, we show that the best cache directive
implementation can perform very close to hand-written CUDA equivalent and improve
performance up to 2.4× (compared to the baseline OpenACC.)

Keywords: OpenACC; cache memory; CUDA; software-managed cache; performance;
GPGPUs.

Reference to this paper should be made as follows: Lashgar, A. and Baniasadi, A. (2019)
‘Efficient implementation of OpenACC cache directive on NVIDIA GPUs’, Int. J. High
Performance Computing and Networking, Vol. 13, No. 1, pp.35–53.

Biographical notes: Ahmad Lashgar is a fourth year PhD candidate in Electrical and Computer
Engineering at the University of Victoria, BC, Canada. For completing his PhD, he works on
developing hardware/software optimisations for accelerators. He wrote IPMACC compiler for
translating OpenACC applications to CUDA, OpenCL, and ISPC backends.

Amirali Baniasadi received his PhD in Computer Engineering from the Northwestern University,
Evanston, IL, USA in 2002. He is currently a Professor at the ECE Department of University of
Victoria, Victoria, BC. His current research interests include high-level accelerator programming
models, low-power microarchitecture, complexity-effective design and clustered processors.

This paper is a revised and expanded version of a paper entitled ‘OpenACC cache directive:
opportunities and optimizations’, presented at the Third International Workshop on Accelerator
Programming Using Directives (WACCPD’16), Salt Lake City, Utah, 13–18 November 2016.

1 Introduction

The OpenACC standard introduces directives, API, and the
environment for developing applications for accelerators.

Most of OpenACC directives and clauses map to API calls
of low-level accelerator programming models, like CUDA
(while we focus on CUDA in this paper, most of the

36 A. Lashgar and A. Baniasadi

discussions apply to OpenCL as well). OpenACC
can be viewed as a high-level programming layer over
low-level accelerator programming models, simplifying
accelerators’ software interface. Compared to low-level
programming models, OpenACC reduces development
effort significantly, as measured up to 11.9X in terms of
words of code by a previous work (Herdman et al., 2012).
On the other hand, OpenACC applications can run much
slower than the CUDA versions. This is because CUDA
programmers can harness all accelerator resources and
apply advanced optimisations. Examples of these
optimisations are exploiting CUDA shared memory as a fast
on-chip cache for inter-thread block communication
(Lashgar and Baniasadi, 2015) and CUDA texture or
constant cache for improving memory bandwidth.
OpenACC, however, mainly relies on the compiler to apply
low-level optimisations. This is due to the fact that
programmers are limited by the notation of OpenACC,
which centres around expressing parallelism. Therefore,
for OpenACC to be competitive with CUDA in
high-performance computing, developing compiler
optimisations are crucial.

In this work, we investigate the compiler aspect of
implementing the cache directive. We study various
implementations and optimisation opportunities. We start
with presenting ineffectiveness of a straightforward
implementation. We show the mapping of parallel loop
iterations to CUDA threads can be configured to share the
cache among several loop iterations. This, in respect,
improves cache utilisation and accelerator occupancy,
yielding a significant speedup. We also present
optimisations for cache fetch routine and cache write
policies. We apply our optimisations and implement a cache
directive, performing close to the hand-written CUDA
version. In summary, we make the following contributions:

 To the best of our knowledge, this is the first paper
investigating the implementation aspect of the cache
directive. We show that a naïve implementation hardly
improves performance (presented in Section 2). We
provide better understanding regarding implementation
challenges and list compile-time optimisations and
opportunities to enhance performance (presented in
Section 4).

 We introduce three methods for implementing the
cache directive (presented in Section 3). One of the
implementations emulates hardware cache. The other
two cache a range of values. Methods differ in cache
utilisation and access overhead. Employing all
suggested optimisations on top of our best solution
delivers performance comparable to that provided by
the hand-written CUDA equivalent.

 We introduce microbenchmarking to understand the
performance of shared memory in CUDA-capable
GPUs (presented in Section 5.1). We show that the
shared memory layout (2D or flattened) has minor
impact on performance. Also, we present how using a

small padding in shared memory allocation can vastly
resolve bank conflicts. We use our findings in
optimising the cache directive implementation.

 We evaluate our suggested implementations under three
benchmarks (presented in Section 5.2): matrix-matrix
multiplication, N-Body simulation, and Jacobi iterative
method. For each benchmark we compare performance
of the proposed cache directive implementations to
baseline OpenACC and hand-written CUDA. We also
estimate development effort of OpenACC and CUDA
versions. We improve the performance of OpenACC up
to 2.4X, and almost match that of CUDA (while
reducing the development effort by 24%).

The rest of this paper is organised as follows. In Section 2,
we overview related background and discuss inefficiencies
of a naïve cache implementation. In Section 3, we present
our proposed implementations for the cache directive. In
Section 4, we introduce optimisations applicable to the
proposed implementations. In Section 5, we evaluate
performance of the proposed methods. In Section 6, we
discuss the limitations of our approach. In Section 7, we
overview related work. Finally, in Section 8, we offer
concluding remarks.

2 Background and motivation

OpenACC API is designed to program various accelerators
with possibly different cache/memory hierarchies.
Generally, the compiler is responsible for generating an
efficient code to take advantage of the hierarchies. Static
compiler passes can figure out specific variables or
subarrays with an opportunity for caching. However, as
static passes are limited, OpenACC API also offers a
directive, allowing programmers to hint the compiler. The
cache directive is provided to facilitate such compiler hints.
The directive is not accelerator specific and is abstracted in
a general form. These hints specify the range of data
showing strong locality within individual iterations of the
outer parallel loop, which might benefit from caching.

The cache directive is used within a parallel or kernels
region. The directive associates with a for loop (where the
locality is formed) and can be used over or in the loop. The
line below shows the syntax of the directive in C/C++:

#pragma acc cache(var-list)

var-list passes the list of variables and subarrays. Subarray
specifies a particular range from an array with the following
syntax:

arr[lower:length]

lower specifies the start index and length specifies the
number of elements that should also be cached. lower is
derived from constant and loop invariant symbols. This can
also be an offset of the for loop induction variable. length is
constant.

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 37

Figure 1 Comparing naïve and optimised cache implementations under 1D stencil kernel listed in Listing 1 (see online version
for colours)

Note: 30-element radius, 1 K, 16 K, 128 K, and 2 M elements.

According to OpenACC specification (OpenACC, 2015),
variables and subarrays listed in var-list should be fetched
into the highest level of the cache for the body of the loop.
We refer to the scope of the loop as cache region. In the
cache region, all accesses to the variables and subarrays
listed in var-list should be served from the cache.

Listing 1 The cache directive example; one-dimensional stencil
(see online version for colours)

1 #pragma acc data copy(a[0:LEN],b[0:LEN])
2 for(n=0; n<K; ++n){
3 #pragma acc parallel loop
4 for(i=1; i<LEN–1; ++i){
5 int lower = i–1, upper = i+1;
6 float sum = 0;
7 #pragma acc cache(a[(i–1):3])
8 for(j=lower; j<=upper; ++j){
9 sum += a[j];
10 }
11 b[i] = sum/(upper–lower+1);
12 }
13 float *tmp=a; a=b; b=tmp;
14 }

Listing 1 shows an example of the cache directive. The
example is based on one-dimensional stencil algorithm. 1D
stencil smooths the values of array iteratively, repeating for
certain number of iterations, here K times. In this example,
the array length and 1D stencil radius are LEN and one
element, respectively. The new value of every element is
calculated as the average of three elements; the element and
right and left neighbours. The programmer can provide a
hint to the compiler to highlight this spatial locality within
each iteration of the parallel loop. On line #7, the cache
directive hints the compiler that each iteration of the loop
requires three elements of a[], starting from i–1. Provided
with this hint, the compiler can potentially cache this data in
registers, software-managed cache, or read-only cache

(depending on the target). Also, depending on the
accelerator-specific optimisation strategies, the compiler
can ignore the hint, which is not the focus of this study.

Figure 1 compares the performance of two different
cache directive implementations (naïve and optimised) for
the code listed in Listing 1. These two implementations are
compared to the baseline (which does not use the cache
directive). The naïve implementation isolates cache space to
each parallel iteration of the loop. The optimised
implementation is equipped with optimisations later
introduced in this paper and exploits the opportunity for
sharing cached elements among parallel iterations.
Consequently, optimised delivers more efficient cache
implementation through better occupancy, cache sharing,
and initial fetch parallelisation. We explain each of these
optimisations in the rest of the paper. This figure
emphasises the importance of optimising cache
implementation.

3 Implementations

In this section, we present three cache directive
implementations for accelerators employing software-
managed cache. We discuss methods for the case where the
list of variables consists of subarrays (simplified versions of
the presented methods are applicable for scalar variables.).
For implementing the cache directive, the compiler requires
two pieces of information:

1 the range of the data to be cached

2 the array accesses (within the cache region) that their
array index value falls within the subarray range (we
assume pointer aliasing is not the case and pointers are
declared as restricted type in the accelerator region,
using C’s restrict keyword).

Using the information provided through the directive, the
compiler knows the subarray; data that should be cached.
To gather the second piece of information, the compiler
must examine the index of every array access in the cache

38 A. Lashgar and A. Baniasadi

region. If the compiler could statically assure that the index
falls within the cache range, the array access might simply
be replaced by a cache access in the code. Otherwise, the
compiler should generate a code to decide to fetch from the
cache or global memory on-the-fly. Therefore, depending
on the code, the compiler may generate a different control
flow. As we show in this paper, this can be very expensive
to calculate in runtime. Starting from OpenACC 2.5
(OpenACC, 2015), the following restriction has been added
to the cache directive specification: within the cache region,
all references to an array listed in the cache directive must
refer to the range specified in the cache directive. Our first
two proposed methods (emulating hardware cache – EHC
and range-based conservative – RBC) comply with the older
OpenACC (2013) specification and are suitable for
applications written in older OpenACC versions (e.g., v2.0).
Our third method takes advantage of the restriction added in
OpenACC 2.5 to highly optimise the implementation.

The first method is an emulation of hardware-managed
cache through software-managed cache. To this end, data
and tag arrays are maintained in the software-managed
cache. Operations of hardware cache are emulated using
these two arrays. The second and third methods are
range-based caching. The second method stores the lower
and length specifiers and checks if the value of the index
falls within this range. The third method assumes all
indexes fall into the fetched range and uses a simple
operation to map array indexes to cache locations. Below,
we elaborate on these methods.

3.1 Emulating hardware cache

3.1.1 Overview

Two arrays are allocated in the software-managed cache;
data and tag. Data array stores the elements of the subarray.
Tag array stores the indexes of subarray elements that are
currently cached. Tag array can be direct-mapped,
set-associative, or fully-associative to allow caching the
entire or part of the subarray transparently. The decision
depends on the subarray size and accelerator capabilities.

3.1.2 Pros and cons

The main advantage of this method is the ability to adapt to
the available cache size. If the cache directive demands a
large space and the accelerator’s cache size is small, this
method allows storing only a portion of the subarray (other
methods might ignore the directive in this case). There are
two disadvantages with this method though. First, storing
the tag array in the software-managed cache lowers the
occupancy of the accelerator and limits concurrent threads.
Second, at least two cache accesses (tag plus data) are made
for every array access, increasing the read/write delay
significantly. In terms of operations, each global memory
access is replaced by two cache accesses and few other
logical/arithmetic and control operations. This significant
overhead impairs the performance advantages as the total

latency of the cache hit can exceed the global memory
latency (depending on the accelerator’s design).

3.2 Range-based conservative

3.2.1 Overview

One array and two pointers are allocated in the
software-managed cache. The array stores the subarray.
Two pointers keep the range of indexes stored in the cache.
One of the pointers points to the start index and the other
points to the end index (or the offset from the start). To
check if the array index falls within the subarray range or
not, the index is checked against the range kept in pointers.
Two comparisons evaluate this; index ≥ start && index <
end. If the condition holds, data is fetched from the cache,
otherwise from global memory. Moreover, if the condition
holds, the index should be mapped from global memory to
cache space. The operation for this mapping is a subtraction
(index-start).

3.2.2 Pros and cons

The cache directive always points to a stride of data. This
method exploits the fact that elements of subarray are a row
of consecutive elements from the original array and
minimises the overhead for maintaining the track of the
cached data (compared to EHC). The method stores two
pointers pointing to the start and end of the stride. The
method can be extended to multi-dimensional subarrays by
storing a pair of pointers per dimension. The only
disadvantage of this method is the performance overhead of
the control flow statement generated for checking whether
the index falls within the range of stride or not. This
control statement might be an expensive operation for
multi-dimensional subarrays (2 + 1 logical ops. plus a
branch for 1D, 4 + 3 logical ops. plus a branch for 2D, etc.).

3.3 Range-based intelligent

3.3.1 Overview

This method improves RBC one step further and assumes
array indexes always fall within the subarray range. This
avoids the costly control flow statements for evaluating
whether the data is in the cache or not. The compiler may
use this method if the compiler passes are able to find the
range of values of the index statically.

3.3.2 Pros and cons

This method has significant performance advantage over
RBC as it avoids the costly control statements for checking
if the data exists in the cache or not. Assuring that the index
always falls within the fetched stride was not a trivial
compiler pass in the past. The restrictions added in the latest
OpenACC version have addressed this by limiting the
subarray references. Accordingly, the latest version of
OpenACC (2015) (2.5 released in November 2015) adds a

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 39

restriction to cache directive requiring all references to the
subarray lie within the region being cached. This essentially
means range-based intelligent (RBI) can be used with all
applications that follow OpenACC ≥ 2.5.

3.4 Example

Listings 2 and 3 show the CUDA implementations of the
methods. Three procedures are implemented for each
method:

1 __cache_fetch()

2 __cache_read()

3 __cache_write() (as a performance issue, these
procedures are declared inline to avoid procedure calls
within the accelerator region).

The accelerator code is generated to call __cache_fetch()
early before the cache region starts. This procedure is
responsible for fetching the data into the cache.Within the
cache region, the compiler replaces every array read with
__cache_read() call and array write statement with
__cache_write() call. For these implementations, we assume
a write-through cache (alternative is discussed in
Section 4.3.).

Listing 2 shows the CUDA implementation of EHC
where the tag array models a direct-map cache. For this
example, we assume a 256-entry cache. In this case,
mapping from global memory indexes to cache space is a
single logical operation. Listing 3 shows the CUDA
implementation of RBC. RBI implementation is the same as
Listing 3, except the control statement in __cache_read()
and __cache_write() is removed as the condition of the
control statement is always true in RBI. In this listing, the
mapping is an arithmetic operation; subtracting index
from the start pointer. __cache_fetch() routine in all
implementations has a for loop statement. Later in
Section 4.2.4, we discuss opportunities to accelerate this
loop through parallelisation.

4 Implementation optimisations

In this section, we introduce optimisations for
implementations introduced in the previous section.
Specifically, we present optimisations for cache fetch
routine, cache sharing, cache writes, and minimising index
mapping overhead.

Listing 2 Implementation of EHC in CUDA (see online version for colours)

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,
2 unsigned st_idx, unsigned en_idx){
3 for(unsigned i=st_idx; i<en_idx; i++){
4 unsigned cache_idx=acc_idx&0x0ff; //direct map
5 c_ptr[cache_idx]=g_ptr[i]; // update data array
6 ctag_ptr[cache_idx]=i; // update tag array
7 }
8 }
9 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,
10 unsigned st_idx, unsigned en_idx, unsigned acc_idx){
11 unsigned cache_idx=acc_idx&0x0ff; //direct map
12 if(ctag_ptr[cache_idx]==acc_idx){
13 return c_ptr[cache_idx]; // read from cache
14 }else{
15 c_ptr[cache_idx]=g_ptr[acc_idx]; // read from global memory, update data
16 ctag_ptr[cache_idx]=acc_idx; // and tag arrays
17 return c_ptr[cache_idx]; // read from cache
18 }
19 }
20 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,
21 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){
22 unsigned cache_idx=acc_idx&0x0ff; //direct map
23 if(ctag_ptr[cache_idx]!=acc_idx)
24 ctag_ptr[cache_idx]=acc_idx; // update tag
25 g_ptr[acc_idx] =c_ptr[cache_idx] =value; // write–through
26 }

40 A. Lashgar and A. Baniasadi

Listing 3 Implementation of RBC in CUDA (see online version for colours)

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
2 unsigned st_idx, unsigned en_idx){
3 for(unsigned i=st_idx; i<en_idx; i++)
4 c_ptr[i–st_idx]=g_ptr[i];
5 }
6 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
7 unsigned st_idx, unsigned en_idx, unsigned acc_idx){
8 if(acc_idx>=st_idx && acc_idx<en_idx){
9 unsigned cache_idx=acc_idx–st_idx;
10 return c_ptr[cache_idx];
11 }else
12 return g_ptr[acc_idx];
13 }
14 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
15 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){
16 if(acc_idx>=st_idx && acc_idx<en_idx){
17 unsigned cache_idx=acc_idx–st_idx;
18 c_ptr[cache_idx]=value;
19 }
20 g_ptr[acc_idx]=value;
21 }

4.1 Cache fetch routine

The cache fetch routine is called before cache region starts.
This is done once per parallel instance of the loop which the
cache directive is associated with (the fetch routine might
be called multiple times, if located in a sequential loop). If
the cache region has long latency, this routine’s
performance may not be the limiting factor. Otherwise, if
the cache region is short, the performance of this routine is
critical to the overall performance.

Performing our evaluations under NVIDIA GPUs, we
found that minimising control flow statements comes with
significant performance advantage. The fetch routine has a
for loop statement (as presented earlier in Section 3.4)
which imposes control flow overhead. Loop unrolling can
be employed to reduce this overhead, as the length of the
loop is a compile-time constant (equal to the length of the
subarray). Also, the compiler can reduce this overhead
further by sharing a single for loop among multiple subarray
fetches. Compiler heuristics can decide if the loop can be
shared among multiple subarrays. For example, the
compiler can read the cache directive and group the
subarrays having equal length. Subsequently, the grouped
subarrays can share the same for loop, as the number of
iterations for fetching the data is the same for all of them.

Another opportunity to optimise the for loop is to
parallelise the loop. A number of parallel threads, e.g., equal
to the size of the thread block, can be employed to fetch the
data into the software-managed cache. If the compiler is not
using parallel threads for another task, parallel fetch can
simply achieve this. However, if parallel threads have

already been employed to execute parallel tasks, then the
compiler should assure that while threads collaborate for
fetching the data, they maintain a separated view of the
cache, especially in the case of cache writes. We explain
this further in Section 4.2.

Listing 4 Example of inner and outer parallel loops around
cache (see online version for colours)

1 #pragma acc parallel loop
2 for(i=0; i<N; i++){ // OUTER LOOP:
3 // depending on X and Y, the subarray
4 // may or may not be shared among iterations
5 #pragma acc cache(subarray[X:Y])
6 { // beginning of cache region
7 #pragma acc loop
8 for(j=0; j<N; j++){ // INNER LOOP:
9 // the subarray is shared among all iterations
10 }
11 } // end of cache region
12 }

4.2 Cache sharing

Considering the relative nesting of the cache directive in
respect to parallel loops, there are two types of parallel
loops: outer parallel loops and inner parallel loops.
Iterations of inner parallel loops already share the same
data. In this section, we introduce a method to find data

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 41

sharing among the iterations of outer parallel loops.
Listing 4 clarifies outer and inner loops in an example.

The cache directive is located within one (or more)
outer parallel loop(s) and the cache space should be
allocated once per parallel instance of outer parallel loop(s).
The compiler can optimise cache utilisation by unifying the
allocations of common data and sharing them among
parallel iterations. When it comes to cache directive
implementations in CUDA, sharing data between parallel
iterations is efficiently feasible by mapping parallel
iterations (in OpenACC) to threads of the same thread block
(in CUDA), sharing data through CUDA shared memory.

We have different methods for cache sharing under
EHC, RBC, and RBI. Under EHC, cache sharing can be
achieved by sharing one single larger data and tag arrays
among all iterations. The complexity is in efficiently
managing consistency of data and tag arrays, considering
parallel accesses to the cache may occur from different
iterations. Currently, the only mechanism in CUDA to
maintain the consistency is to update data and tag arrays
atomically using atomic operations. Since this severely
slows down the performance, we found cache sharing
unpromising in EHC. Below, we discuss cache sharing
method under RBC and RBI.

We decompose the cache sharing problem under RBC
and RBI to five subproblems:

1 extract sharing

2 find sharing width

3 renew cache scope

4 fetch collaboratively

5 optimise cache size.

Below, we discuss each problem.

4.2.1 Extract sharing

The problem is to map outer parallel loops (loops that are
marked by the OpenACC loop directive as parallelisable) to
thread hierarchies with the constraint of maximising the
subarray overlap among threads of the thread block.
Listing 5 presents a compiler pass as a solution to this
problem. The problem inputs are the cache directive (code
block where pragma is injected and list of subarrays), outer
parallel loops (loop handle, induction variable, and
increment step), and the kernel code. The problem output is
the mapping of loop iterations to CUDA thread block
dimensions.

Listing 5 Compiler pass that extracts cache sharing opportunity and suggests a mapping to maximise the overlap among subarrays of
consecutive iterations (see online version for colours)

Inputs:
 cache: the code block id of the cache region
 subarrays: array of subarrays listed in the cache directive
 Ls: array of outer parallel loops, indexed by induction variables
 IDs: array of induction variables associated with outer parallel loops
 code: the kernel code
Output:
 mapping: structure showing the parallel loops to kernel dimensions mapping
Begin
 final_mapping = []
 skipped_subarray = []
 for subarray in subarrays
 unmapped_dimensions = [x, y, z]
 suba_mapping = []
 for dimension in subarray
 lower, length <– get_specifiers(dimension)
 if is_linear(lower, IDs, code, Ls)
 rate, inductionVar, offset <– get_linear_params(lower, IDs, code, Ls)
 // map parallel loop iterated by inductionVar to an unmapped dimension
 suba_mapping.push(Ls[inductionVar] –> unmapped_dimension.pop())
 if not is_contrary(final_mapping, suba_mapping)
 mapping = merge(final_mapping, suba_mapping)
 else
 skipped_subarrays.push(subarray)
 return final_mapping
End

42 A. Lashgar and A. Baniasadi

The pass iterates over the subarrays listed in the cache
directive. For each dimension of the subarray (dealing with
multi-dimensional subarrays), lower and length specifiers
are read. If lower is a linear function of one single induction
variable, consecutive iterations of the loop corresponding to
the induction variable are considered for sharing (see
examples in Table 1). is_linear() function returns true if:

1 lower specifier is a linear function of an induction
variable

2 the increment step of the corresponding loop is linear
(e.g., i+=1, i-=1, i+=7, etc.).

If lower is linear, it should be in rate inductionVar + offset
form, where inductionVar is an induction variable and rate
and offset are expressions independent of any induction
variable. Forcing the increment step to be linear assures that
the neighbour threads cache subsequent elements, forming a
sharing range that is densely populated by the data from
neighbour threads (consecutive iterations).

get_linear_params() returns rate, inductionVar, and
offset. suba_mapping is updated to map the parallel loop
iterated by inductionVar to unmapped thread block
dimensions, starting with x dimension. is_contrary() returns
true if the suba_mapping that is found here contrasts with
the mapping recorded in final_mapping. If this is the case,
subarray is pushed to skipped_subarrays. Cache sharing
optimisations will be skipped for the subarrays in
skipped_subarrays. Otherwise, final_mapping is updated to
be merged with suba_mapping.

Table 1 Example of cache sharing when lower specifier is a
linear function of an induction variable

Subarray Lower Length Ranges mapped
to the iterations

Shared
range

a[i:3] i 3 T0 –> 0 to 2
T2 –> 1 to 3

T2 –> 2 to 4, etc.

T0 to T2
–> 0 to
4, etc.

a[2*i+1:3] 2*i+1 3 T0 –> 1 to 3
T1 –> 3 to 5

T2 –> 5 to 7, etc.

T0 to T2
–> 1 to
7, etc.

a[3*i+4:5] 3*i+4 5 T0 –> 4 to 8
T1 –> 7 to 11

T2 –> 10 to 14,
etc.

T0 to T2
–> 8 to
14, etc.

Note: Assumptions: i is an induction variable of a
parallel loop, increment step of the loop iterated
by i is +1, and thread block size is 3.

4.2.2 Find sharing width

Sharing width is referred to the number of iterations (or
threads) that share one common cache. Ideally, sharing
width is equal to the thread block size. This is the case when
the total number of loop iterations is multiple of the thread
block size. However, since the total number of loop
iterations is a runtime variable mostly, compiler cannot
statically assure this number is multiple of thread block size.
We propose three different methods to find the sharing

width in CUDA; using synchronisation, kernel arguments,
or fixed.

 Synchronisation: This method counts the number of
threads that have reached the cache region. To count
the number of threads, __syncthreads_count(bool flag)
device function from CUDA API is used. To count the
number of threads along x dimension of the thread
block, __syncthreads_count is called with the argument
threadIdx.y==0 && threadIdx.z==0. Similarly, for y
and z dimensions of the thread block, the function is
called with threadIdx.x==0 && threadIdx.z==0 and
threadIdx.x==0 && threadIdx.y==0 arguments,
respectively.

 Kernel arguments: This method exploits the fact that
only the last thread blocks across every dimension may
have a sharing width different than the thread block
size. This width can be pre-calculated and passed to the
kernel as an argument, knowing the total number of
iterations and the thread block size upon kernel launch.
Within the kernel, threads check if they belong to the
last thread block of the dimension. If yes, sharing width
is set to the value passed as the argument. Otherwise,
sharing width is equal to the thread block size. This
method has a performance advantage over the first
method as it avoids synchronisation and reduction.

 Fixed: This method simply sets the sharing width equal
to the thread block size. This method is only applicable
in the case where compiler can statically assure that the
total number of loop iterations is multiple of the thread
block size.

4.2.3 Renew cache scope

From the notation of the cache directive, every thread
knows the range from lower to lower + length is cached. For
RBC and RBI, start and end pointers are set to these values.
However, when threads of the thread block are sharing the
cache, these pointers should be recalculated, since a larger
data range is cached in this case. We propose two different
methods to recalculate pointers: communicating and private.

 Communicating: This method shares pointers among
threads of the thread block. To share pointers, these are
declared as CUDA __shared__ variables. To set
pointers consistently, one thread is to set start and
another thread is to set end. start pointer is set to lower
by the thread that is demanding subarray’s elements
located at the lowest address. This is the first thread
within the sharing width, if the corresponding loop has
increasing increment step (e.g., +=1, +=3, etc.).
Otherwise, if the corresponding loop has decreasing
increment step (e.g., –=1, –=3, etc.), this thread is the
last thread within the sharing width. Similarly, end
pointer is set to lower + length by the thread that is
demanding subarray’s elements located at the highest
address. This is the last thread within the sharing width,
if the corresponding loop has increasing increment step.

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 43

Otherwise, if the corresponding loop has decreasing
increment step, this thread is the first thread within the
sharing width.

 Private: This method allocates start and end pointers
privately for each thread.

Following equations are used to recalculate start and end
pointers privately:

 start lower rate threadID

(1) (1)end start length rate sharingWidth

where lower, rate, threadID, length, and sharingWidth
parameters are explained below. lower and length are
specifiers of the subarray passed to the cache directive. rate
is obtained from lower by using get_linear_params()
function explained in Section 4.2.1. sharingWidth is the
number of active threads in the cache region obtained by the
methods discussed in Section 4.2.2. threadID is the thread
ID within the thread block, ranging from 0 to sharingWidth
– 1 in the cache region. Equations above are applicable to
the case where lower is a function of an induction variable
of a loop with an increasing increment step. Under
decreasing increment step, following equations are used:

 (1)start lower rate threadID rate sharingWidth

 (1)end lower rate threadID length

4.2.4 Fetch collaboratively

If cache sharing is applicable, threads of the thread block
share one common data in shared memory. Since the
common data is composed of words located at consecutive
addresses, threads of the thread block can be used to
efficiently fetch the data using few well-coalesced
accesses in parallel. To perform this optimisation, only
__cache_fetch() routine in Listing 3 needs to be modified.
The for loop statement should be modified to:

(. _ ;
_ ; .)

for unsignedi threadIdx x st idx
i en idx i blockDim x

This is for the case where the subarray is one-dimensional
and the parallel loop is mapped to x dimension of the thread
block. For multidimensional subarrays, this loop is
replicated but modified to reflect correct mapping of
parallel loops to thread block dimensions.

4.2.5 Optimise cache size

When cache is not shared, each thread demands length
elements from shared memory. While sharing the cache
among threads of the thread block, it might seems length
sharingWidth elements from shared memory are required.
This is correct as long as subarrays of consecutive loop
iterations are located back to back in the memory.
Otherwise, if there is an overlap or gap among subarrays,
this number overestimates or underestimates the exact size.
We use the following formula to optimise the cache size:

(1)length rate sharingWidth

where sharingWidth is the number of active threads in the
cache region obtained by the methods discussed in
Section 4.2.2. length is a specifier of subarray passed in to
the cache directive. rate is obtained from lower by using
get_linear_params() function explained in Section 4.2.1.

4.3 Cache write policy

Writing to the subarray in the cache region invokes the
write routine. We assume two alternative policies for cache
write: write-back and write-through. Write-back buffers
cache writes and writes final changes back to DRAM at the
end of the cache region. Write-through writes every
intermediate write to both cache and global memory.
Write-back tends to perform better under dense and regular
write patterns whereas write-through performs better under
sparse irregular write patterns. We compare performance of
these two implementations in Section 5.3.

If the compiler implements write-back cache, an
additional routine should be invoked at the end of the cache
region to write the dirty content of the cache to global
memory. For tracking the dirty lines, the compiler can
decide to:

1 keep track of the dirty lines through a mask

2 assume all the lines are dirty.

Although keeping track of dirty lines can reduce the total
amount of write operations, the compiler can instead use the
brute-force write-back on the GPUs for two reasons.
First, tracking dirty lines demands extra space from the
software-manage cache to store the dirty mask. This, in
turn, lowers the occupancy of GPU. Second, the write-back
routine can include extra control flow statements to filter
out dirty lines. These control flow statements can harm
performance (e.g., limiting ILP and loop unrolling). On the
other hand, employing a dirty mask is preferred, if the size
of the cache is large. In this case, the dirty mask version is
more efficient than the brute-force approach. In this paper,
we assume brute-force write-back cache.

4.4 Index mapping

As we discussed in Section 3, mapping global memory
indexes to shared memory indexes involves a few
operations. To mitigate this overhead, the compiler can
allocate a register to store the output of operations for the
life time of the cache region, if the value of index is not
changing in the cache region. The compiler can also reuse
this register for other array accesses, if the array indexes
have the same value. This optimisation saves register usage
and mitigates index mapping overhead.

5 Experimental results

In this section, we first report the experiments performed
to understand shared memory and optimise our

44 A. Lashgar and A. Baniasadi

implementation on the target GPU. Then we study the
performance of methods introduced in Section 3, under
three test cases. This is followed by investigating
performance of different cache write policies. Finally, we
evaluate performance portability of our implementation.

We use IPMACC compiler (Lashgar et al., 2014) for
compiling OpenACC applications and implementing the
cache directive. IPMACC framework translates OpenACC
to CUDA and uses NVIDIA nvcc compiler to generate GPU
binaries. We run evaluations under NVIDIA Tesla K20c
GPU. The execution time of the kernel is measured by
nvprof (NVIDIA Corp., 2017a). Every number is harmonic
mean of 30 independent samples.

5.1 Cache performance sensitivity

Software-managed cache in NVIDIA GPUs (also called
shared memory) employs multiple banks to deliver high
bandwidth. Every generation of NVIDIA GPUs has a

certain configuration of shared memory; namely a specific
number of banks and the bank line size. A bank conflict
occurs once a warp (group of threads executing instructions
in lock-step over the SIMD). Executes a shared memory
instruction and threads of a warp need different rows of the
same bank. Bank conflicts cause access serialisation if the
bank does not have enough read/write ports to deliver data
in parallel. We develop a CUDA microbenchmark to
evaluate the impact of several parameters on bank conflict.
Knowing these impacts delivers deeper insight on
optimising the cache directive implementations and
enhancing their performance. This test should run separately
for every backend supported by the compiler to allow
hardware-specific optimisations. Below, we first review the
microbenchmark structure, followed by presenting results
obtained on the GPU of this study. Finally, we summarise
the findings that help optimising the cache directive
implementation.

Listing 6 CUDA microbenchmark for understanding shared memory (see online version for colours)

// compiled for different TYPE, ITER, PAD, XY
__global__ void kernel(TYPE *GLB, int size){
 __shared__ int SHD[16+PAD] [16+PAD];
 // mapping config to shared memory
 #ifdef XY
 int row=threadIdx.x, rows=blockDim.x;
 int col=threadIdx.y, cols=blockDim.y;
 #else
 int row=threadIdx.y, rows=blockDim.y;
 int col=threadIdx.x, cols=blockDim.x;
 #endif
 // fetch
 int index=(threadIdx.x+blockIdx.x*blockDim.x)*size+
 (threadIdx.y+blockIdx.y*blockDim.y);
 SHD[row][col]=GLB[index];
 // computation core
 int S = (row==(rows–1))?row:row+1;
 int N = (row==0) ?0 :row–1;
 int W = (col==(cols–1))?col:col+1;
 int E = (col==0) ?0 :col–1;
 int k=0; TYPE sum=0;
 for(k=0; k<ITER; k++){
 sum=(SHD[row][col]+ SHD[S][col]+ SHD[N][col]+ SHD[row][E]+ SHD[row][W])*0.8;
 __syncthreads(); SHD[row][col]=sum; __syncthreads();
 }
 // write–back
 GLB[index]=SHD[row][col];
}

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 45

Figure 2 Comparing execution time of kernel under various shared memory configurations (see online version for colours)

5.1.1 Microbenchmark setup

We assume one two-dimensional shared memory array per
thread block. We also assume two-dimensional thread
blocks. We develop a simple kernel in which every thread
reads four locations of shared memory and writes one
location. These reads/writes are in a loop iterated several
times. The code is shown in Listing 6. We report the
execution time of this kernel and evaluate the impact of the
following parameters in the kernel body:

 Datatype size (TYPE): The datatype size of shared
memory array is the number of bytes allocated for each
element of array. Variations in datatype size impact
bank conflict since it determines the layout of array in
the shared memory (e.g., one element per bank, two
elements per bank, etc.).

 2D array allocation: We investigate two alternatives in
allocating 2D shared memory: 2D array notation or 1D
array notation (flattened notation). 2D array notation is
simpler in indexing and code readability. We are also
interested to understand whether flattened notation has
a different layout in the shared memory from 2D array.

 Padding (PAD): When the size of shared memory array
is multiple of memory banks, adding a small padding to
the array can mitigate the bank conflict. The padding
increases the row pitch, spreading the columns of a row
across different banks.

 Access pattern: Since bank conflict only occurs among
the threads of the same warp, it is important to mitigate
bank conflict algorithmically. We evaluate the impact
of these algorithmic optimisations by mapping threads
of the thread block to different dimensions of the
shared memory array. Operating in XY mapping,
threads along the x dimension of the thread block are
mapped to the first dimension of the shared memory
array and threads along the y dimension are mapped to
the second dimension. YX mapping reverses this as
threads along x and y dimensions are mapped to the
second and first dimensions of the array, respectively.

 Iterations (ITER): Number of iterations of the loop in
the kernel body. This number indicates the ratio of
shared memory accesses to global memory accesses.

5.1.2 Results

Figure 2 reports the execution time of the kernel in Listing 6
under various configurations. Bars report the execution time
for three different ITERs (1, 2, and 4), two TYPEs (4-byte
integer and 8-byte floating-point), two array allocation
schemes (2D and flattened 2D), two shared memory access
patterns (XY and YX), and two padding sizes (zero and
one).

As shown in the figure, TYPE has modest impact on the
execution time. Also, the allocation scheme has minor
impact on performance. The latter suggests that the layout
of 2D array in the shared memory banks is similar to that of
the flattened 2D array.

Access pattern, however, impacts performance
significantly. In this benchmark, YX mapping delivers a
better performance compared to XY. This is explained by
how threads are grouped into warps. Warps are occupied
first by the threads along the x dimension and then by the
threads along y. Therefore, threads along x should access
consecutive words in order to reduce shared memory bank
conflict. This is precisely what YX mapping does.

As shown in the figure, adding a padding to the array
can have an impact similar to that of access pattern tunings,
lowering the execution time roughly the same amount.
Adding a padding to the array can lower the execution time
by 57% and 56% under double and int, respectively. It
should be noted that under the cases where the array is
padded there is still room for improvement as evidenced by
the results. Under one padding, modifying the code
algorithmically for reducing bank conflict, as comparing
XY to YX shows, can further lower the execution time by
8% (for both int and double).

Increasing the number of iterations (ITER) increases the
importance of the shared memory performance in the
overall performance. For larger iterations, the impact of
access pattern and padding is more significant. For example,
under one iteration, the gap between zero-padding and

46 A. Lashgar and A. Baniasadi

one-padding is 23%. This gap grows to 37% and 55% under
two and four iterations, respectively.

5.1.3 Summary of findings

We make the following conclusions from the findings
presented in this section and use them to optimise our
implementations. First, the layout of 2D arrays allocated in
the shared memory is found to be the same as flattened 2D
arrays. Since no performance advantage is found in using
flattened 2D arrays, we use multi-dimensional arrays for
caching multi-dimensional subarrays to simplify array
indexing code generation. Second, our implementation
adjusts mapping of parallel loops to x and y dimensions of
the thread blocks with the goal of having threads along x
accessing consecutive bytes. We use a heuristic to map the
most inner parallel loop to the x dimension of the grid. This
is due to the fact that, intuitively, the inner loop has stronger
locality and traverses arrays column-wise. Third, adding a
small padding can pay off if other compiler optimisations do
not allow mapping inner parallel loops over x dimension.

5.2 Test cases

Here, we investigate the cache directive under three
different benchmarks; matrix-matrix multiplication
(GEMM), N-Body simulation, and Jacobi iterative method.
For each benchmark, we compare the performance of four
implementations (we found EHC implementation very slow
and hence we avoid further discussion on this.):

1 OpenACC without cache directive

2 OpenACC plus cache directive implemented using
RBC

3 OpenACC plus cache directive implemented using RBI

4 hand-written CUDA version.

Table 2 Development effort of the benchmarks under
OpenACC, OpenACC plus cache, and CUDA
implementations

 OpenACC OpenACC+cache CUDA

GEMM 84 94 116
N-Body 81 84 108
Jacobi 145 152 189

All cache-based implementations are optimised with the
parallel cache fetch and cache sharing optimisations
discussed in Section 4. Under RBC and RBI, we use kernel
arguments as the default method for finding sharing width
(discussed in Section 4.2.2) and we use private as the
default method for renewing cache scope (discussed in
Section 4.2.3).

Below, we first compare development efforts of these
four implementations. Next, we compare performance of
these implementations. Then, we investigate how these
implementations utilise GPU resources, e.g., register file

and software-managed cache. Finally, we investigate the
impact of alternative optimisations on the speedup.

5.2.1 Development effort

We wrote all versions of GEMM and Jacobi. For N-Body
Simulation, we used the CUDA version available in GPU
Computing SDK (NVIDIA Corp., 2017b) and modified the
serial version available there to obtain OpenACC versions.
We did our best to hand-optimise using the techniques that
we are aware of. Table 2 compares the development effort
of GEMM, NBody, and Jacobi under OpenACC, OpenACC
plus cache, and CUDA implementations. Development
effort is measured in terms of the number of statements,
including declaration, control, loop, return, and assignment
statements. As reported, OpenACC plus cache can be
obtained by modifying 3 to 10 lines of the baseline
OpenACC version.

5.2.2 Performance

5.2.2.1 GEMM

Cache-based OpenACC implementations iteratively
fetch 16 × 16 tiles of two input matrices into the
software-managed cache using the cache directive and keep
the intermediate results (sum of products) in registers. The
CUDA version also implements the same algorithm
using shared memory notation. Figure 3 compares the
performance of these implementations under various square
matrix sizes, compared to the baseline OpenACC (without
cache). A similar trend can be observed under different
input sizes. RBI outperforms OpenACC by nearly 2.4× and
performs very close to CUDA. RBC, RBI, and CUDA
reduce the global memory traffic significantly, compared to
OpenACC. By fetching the tiles of input matrices into
software-managed cache, these implementations maximise
memory access coalescing. Also, these implementations
exploit the locality among neighbour threads to minimise
redundant memory fetches. Using nvprof (NVIDIA Corp.,
2017a), we found that RBI reduces the number of global
memory loads by 12× (under 1,024 × 1,024 matrices),
compared to OpenACC (the very same improvement is
observed under RBC and CUDA too). Using RBC, the
compiler generates a code to check the memory addresses
dynamically and to find out if the address falls within the
subarray range or not. If the address falls within the
subarray range, the data is fetched from the cache.
Otherwise, the data is fetched from the global memory.
Under RBI, however, the compiler static passes assure that
dynamic memory accesses always fall in the subarray range
(if violated, the program can generate incorrect output).
Therefore, dynamic checking for the address range is
avoided. This explains why RBI always performs faster than
RBC. As shown in Figure 3, RBC is 2.67× slower than RBI.
This gap is caused by RBC’s extra logical and control flow
instructions per memory access, negating the gain achieved
from using the software-managed cache. For the 2D
subarray of this benchmark, these extra instructions are one

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 47

branch, four comparisons, and three ANDs. We discuss this
issue further in Section 6.

5.2.2.2 N-Body simulation

Figure 4 compares four implementations of N-Body
simulation under different problem sizes. To improve
performance using software-managed cache, interaction
between masses are computed tile-by-tile. Bodies are
grouped into tiles and fetched into software-managed cache
one tile at a time. This lowers redundant global memory
instructions and DRAM accesses. RBI outperforms baseline
OpenACC by 92%–111%. While RBI performs very close
to CUDA, there is still a gap between them (8%–10%). This
gap is mainly the result of efficient implementation of the
fetch routine in the CUDA version. RBC is unable to
improve performance of the baseline OpenACC. This is
explained by the overhead for accessing software-managed
cache; i.e., assuring the address falls within the range of
data existing in the shared memory.

5.2.2.3 Jacobi iterative method

Figure 5 compares four implementations of Jacobi iterative
method under different problem sizes. Each thread in Jacobi
reads nine neighbour elements (3-by-3 tile) and updates the
value of the centre element. Considering a two-dimensional
matrix, calculations used by neighbour elements share
significant amount of input data (four to six elements.)
Fetching this data into software-managed cache and sharing
data among threads is one-way to optimise baseline
OpenACC. We employ this in RBC, RBI, and CUDA
implementations. Although our analysis shows RBC lowers
global memory accesses, RBC harms overall performance
when compared to the baseline. This is explained by the
overhead (control flow and logical operations) of assuring
addresses fall within the range of the data fetched into the

shared memory. RBI removes this overhead and improves
performance of baseline OpenACC by 3%–6%. Despite
this, we observe a huge gap between RBI and CUDA.
CUDA launches thread blocks equal in size to the size of
the data being used by the thread block. RBI, however,
launches thread blocks equal in size to the size of the
computations being performed by the thread block. This
results in the CUDA version using slightly larger thread
block size than RBI. Here, threads at the boarder of thread
block are only used for fetching the data. This reduces
irregular control flow in the fetch routine. We found that
this can be effectively implemented in OpenACC to reduce
the gap between RBI and CUDA. However, we do not
investigate it further due to the high development effort
required (close to CUDA equivalent), which is not desirable
for high-level OpenACC.

5.2.3 Occupancy

Table 3 reports CUDA occupancy of different
implementations of the test cases discussed in Section 5.2.2.
The table reports occupancy in percentage and, within the
parentheses, the first number reports registers used per
thread and the second number report the size of shared
memory used per thread block. All implementations have
the same thread block size: 256 under N-Body and 16 by 16
under GEMM and Jacobi. Occupancy is 100% in most
cases, meaning that GPU is able to run up to 2,048 threads
per streaming multiprocessor. There are three cases where
the occupancy is below 100%. RBC implementation of
GEMM uses extra registers and that explains why
occupancy drops below 100%. The size of cache after cache
sharing is overestimated under RBC and RBI
implementations of N-Body. This has lowered down the
occupancy to 75%.

Figure 3 Comparing performance of four GEMM implementations under different matrix sizes (see online version for colours)

Notes: For each bar group, bars from left to right represent OpenACC without cache directive, OpenACC with cache directive

implemented using RBC, OpenACC with cache directive implemented using RBI, and CUDA.

48 A. Lashgar and A. Baniasadi

Figure 4 Comparing performance of four N-Body simulation implementations under different number of bodies (see online version
for colours)

Figure 5 Comparing performance of four Jacobi iterative method implementations under different matrix sizes (see online version
for colours)

Figure 6 Comparing speedup from different finding sharing width methods

Note: Numbers are normalised to the baseline OpenACC without using the cache directive.

Table 3 Comparing occupancy of OpenACC without cache, OpenACC plus cache (RBC and RBI), and CUDA

 GEMM N-Body Jacobi

OpenACC-nocache 100% (24, 0) 100% (32, 0) 100% (16, 0)
OpenACC-cache-RBC 75% (33, 4 KB) 75% (30, 8 KB) 100% (21, 1.2 KB)
OpenACC-cache-RBI 100% (30, 4 KB) 75% (30, 8 KB) 100% (18, 1.2 KB)
CUDA 100% (30, 4 KB) 100% (32, 4 KB) 100% (11, 1.2 KB)

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 49

Figure 7 Comparing speedup from different renewing cache scope methods

Note: Numbers are normalised to the baseline OpenACC without using the cache directive.

Figure 8 Comparing execution time of kernel under various shared memory configurations (see online version for colours)

5.2.4 Implementation alternatives

In Section 5.2, we reported performance of RBI and RBC
under kernel arguments method of finding sharing width
(discussed in Section 4.2.2) and private method of renewing
cache scope (discussed in Section 4.2.3). In this section, we
investigate performance of RBI under alternative methods
for finding sharing width and renewing cache scope (very
similar discussion applies to RBC as well.)

 Find SharingWidth: We compare speedup from three
alternative methods for finding sharing width (kernel
arguments, synchronisation, and fixed), under three test
cases introduced earlier (GEMM, N-Body, and Jacobi).
Fixed method simply sets the sharing width to the
thread block size. Kernel arguments method uses a
control-flow statement per dimension and sets the
sharing width either to the thread block size or a

pre-calculated number (obtained from kernel
arguments). Synchronisation method performs one
reduction per dimension of subarray to find sharing
width. As reported in Figure 6, fixed method performs
fastest. Although fixed method is the fastest, it is not
generally applicable. This is because compiler may not
be able to statically guarantee that the total number of
loop iterations is multiple of thread block size. If this is
the case, kernel arguments method can be used instead
of fixed method. We found that the performance gap
between fixed and kernel arguments is 3%–5%.
Synchronisation method performs slowest under all test
cases as reported in Figure 6 and performs up to 3%
slower than kernel arguments. Reductions slow down
performance of synchronisation significantly for
multi-dimensional subarrays. This is the case in GEMM
and Jacobi that use two-dimensional subarrays. In

50 A. Lashgar and A. Baniasadi

N-Body, however, one-dimensional subarray is being
used and synchronisation method performs close to
kernel arguments.

 Renew cache scope: We compare speedup from two
alternative methods of renewing cache scope
(communicating and private), under three test cases
introduced earlier (GEMM, N-Body, and Jacobi).
Communicating method shares cache pointers among
threads of the thread block and calculates the newscope
collaboratively. Slowdown under communicating
method is incurred by thread block synchronisations
and read/writes from shared memory. Private method,
however, locally calculates the new cache scope
according to the equations proposed in Section 4.2.3
and avoids debilitating inter-thread communications.
As shown in Figure 7, private method outperforms
communicating method under all test cases, except
under smallest dataset of N-Body. In this case, the
number of parallel threads is relatively low and GPU
cores complete inter-thread communication very fast
[since synchronisation instructions are infrequently
hindered by other instructions (Liu et al., 2016)]. This
makes communicating method faster than private
method in this case. Overall private method
outperforms communicating method by up to 47%.

5.3 Cache write

We developed two synthetic workloads to investigate
performance of write-back and write-through policies. The
first workload’s write pattern is dense and regular. The
workload is of 1D stencil type where each parallel work
computes an element in the output array, iteratively. In
OpenACC terms, all parallel iterations are active (forming
the dense pattern) and consecutive iterations write
consecutive words (forming the regular pattern). Every
parallel work serially iterates for a certain number of
iterations (which is a run parameter) and computes the value
of the element iteratively. The second workload is the same
as the first, except that only a fraction of threads are active
(less than 2%) and only a fraction of serial iterations
perform write (less than 2%). This forms the sparse pattern.

Parameters of these workloads are parallel iterations
(total number of work) and number of serial iterations
within the work. The number of serial iterations models the
frequency of cache writes. Sweeping this number from 4 to
4,096, we measure the performance of write-back and
write-through under various cache access frequencies.

Figure 8 compares write-back and write-through under
the two synthetic workloads described above (dense regular
versus sparse). Two problem sizes are reported for each
workload, 128K and 4K parallel work. We observe a similar
trend under both workloads. When parallel work is massive
in size (e.g., 128K work), write-back is faster than
write-through [Figures 8(b) and 8(d)]. This is due to the fact
that large amount of threads can perfectly hide the latency
of write-back’s final write routine. When parallel work is
small in size and write frequency is low [e.g., left side of

Figures 8(a) and 8(c)], write-through outperforms
write-back. For example in Figure 8(a), write-through is
faster when write frequency is lower than 16. Going beyond
16, write-back starts to catch up with write-through. This
can be explained by the higher rate of global memory writes
that write-through makes. For large write frequencies
(e.g., > 64), write-through performs numerous redundant
writes to global memory. Write-back, in contrast, buffers
intermediate written values (in shared memory) and writes
them all to global memory once at the end of cache region.
This reduces the total global memory writes compared to
write-through and saves performance. As presented, the
performance gap between write-back and write-through
increases from 7% to 34%, as write frequency increases.

Table 4 Performance improvement from RBI over the
baseline OpenACC (without cache)

 Tesla K20c Quadro K600

GEMM 238.0% 255.1%
N-Body 198.0% 211.4%
Jacobi 6.4% 2.5%

5.4 Performance portability

Performance portability is one of the most important
motivations of using OpenACC directives. In this paper, we
focused on devising efficient implementation of the cache
directive on the most commonly used platform (Norman
et al., 2015; Bonati et al., 2015; Markidis et al., 2015),
NVIDIA GPUs. Intuitively, we believe very similar
optimisation strategies can be followed on other similar
architectures, e.g., AMD GPUs (AMD Inc., 2012), to devise
an efficient implementation of the cache directive.
Discussing optimisation strategies on different platforms is
beyond the scope of this paper.

To show the performance portability across NVIDIA
GPUs, here we evaluate our implementation on a
different NVIDIA GPU, Quadro K600. In Table 4, we
report performance improvement from RBI implementation
over the baseline OpenACC (without cache) under three
benchmarks: GEMM, N-Body, and Jacobi. We limit the
evaluations to single dataset per benchmark (largest dataset
that could fit in the memory of Quadro K600). For RBI
configuration, we assume private method for renewing
cache scope (Section 4.2.3) and kernel arguments method
for finding sharing width (Section 4.2.2). As shown in the
table, improvements are very close. Improvements are
slightly larger under Quadro K600 forGEMMand N-Body
benchmarks. This can be explained by the difference in the
memory bandwidth of Quadro K600 and Tesla K20c.
DRAM memory bandwidth of Quadro K600 is 29 GB/s
which is 7.1 times lower than the bandwidth ofTesla K20c
(208 GB/s). Accordingly, Quadro K600 is more sensitive to
the techniques that optimise memory accesses. The cache
directive is an example of these techniques and returns
higher performance improvement when the memory
bandwidth is throttled (e.g., Quadro K600).

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 51

6 Discussion

6.1 EHC in CUDA

In EHC, tag and data arrays should be kept consistent. This
limits cache sharing and generally parallelism of software-
managed cache operations, specially write operations. For
instance, if two threads miss different data and want to fetch
both into the same location, synchronisation is necessary.
The synchronisation overhead can be significant as the only
way to handle such scenarios is to create a critical section or
use atomic operations. Because of this limitation, for
performance goals, cache sharing optimisations should be
avoided on top of EHC. We exclude EHC from evaluations
as we did not find it competitive.

6.2 Optimising RBC

In RBC, __cache_read routine is the performance limiting
factor, listed in Listing 3. Investigating the CUDA assembly
of the kernel (in sass format), we found that the compiler
eliminates branches and instead uses predicates. This, on the
positive side, eliminates extra operations for managing the
post-dominator stack (Fung et al., 2007). On the negative
side, all instructions, in both taken and not taken paths of
the branch, are at least fetched, decoded, and issued (some
are executed as well). The nvcc compiler uses a heuristic to
employ predicates or generate control flow statements [we
describe this in Section 5.4.2 of NVIDIA Corp., (2017c)].
For __cache_read routine of RBC, the heuristic finds
predicate advantageous. However, the overhead of the
predicate version is still huge and the routine is translated to
16 machine instructions. This explains why RBC is slow.
We believe further optimisations on RBC should be
performed at the machine level.

6.3 Alternative cache targets

NVIDIA GPUs have alternative on-chip caches that can be
used by OpenACC compiler as the target of the cache
directive (e.g., constant memory and texture cache) or can
be used effortlessly as an alternative to the cache directive
(L1 cache and read-only cache). Constant and texture
memory are limited to read-only data. If the subarray is
written in the cache region, constant and texture memory
can not store the latest value nor deliver the latest to
subsequent requests. In addition, the precision of the
application could be affected if texture memory is used. We
evaluated the performance impact of L1 and read-only
caches separately. We enforced read-only cache using const
and __restrict__ keywords and forced the GPU to cache
global accesses through nvcc compile flags (-Xptxas-
dlcm=ca) and found out that performance improvements are
less than 2%. This suggests that the advantages of using
software-managed cache is not limited to reading/writing
data from/to faster cache, but also accessing the data in
fewer transactions and in a coalescing-friendly way.

6.4 Explicit mapping

OpenACC API accepts hints from the programmer to
explicitly specify the mapping of loop iterations to different
thread blocks (gang clause) or the same thread block
(worker and vector clauses). In this case, the compiler
should generate a specific mapping of parallel loops to
CUDA thread hierarchies, forced by gang, vector, and
worker clauses. This can limit the range of compiler
optimisations in sharing the cache space among threads.
Generally, as long as the mapping enforced by the clauses is
a valid configuration and does not have conflict with the
outcome of the compiler pass we propose in Section 4.2.1,
the compiler proceeds and exploits the sharing opportunity.
Invalid configuration is created when the sharing range is
larger than the CUDA shared memory size. This can be
enforced by vector and worker clauses that map loop
iterations to threads of one thread block and change the
thread block size across x and y dimensions, respectively.
The conflict mostly occurs when gang clause is used. gang
clause asks the compiler to map each iteration to a thread
block. This can have conflict with the compiler pass we
presented in Section 4.2.1, if the compiler decides to map
this loop to threads of the thread block. In the case of
conflict, the compiler can limit the sharing range, e.g.,
sharing only across one dimension of the grid and ignoring
the sharing along the gang loop, or even ignoring the
sharing optimisation, in the worst case.

6.5 Alternative cache implementations

To the best of our knowledge, currently there are no
commercial or open source OpenACC compilers that
support the cache directive. Therefore, we are unable to
compare performance of our implementation to other
studies. We studied several compilers (i.e., PGI and Omni)
but found none of them supporting the cache directive. We
compiled the kernels with PGI Accelerator compiler 16.1
and found out that the compiler ignores the cache directive
and does not generate shared memory CUDA code. We also
investigated several open source frameworks, e.g.,
RoseACC, accULL, and Omni compiler, of which none had
an implementation for the cache directive.

6.6 Cache coherency

As stated by OpenACC specification (OpenACC, 2013,
2015), it is possible to write an accelerator parallel/kernels
region that produces inconsistent numerical results. This is
because some accelerators (e.g., GPUs) implement weak
memory model. In weak memory model, memory
coherency is not supported between operations executed by
different threads nor between subsequent operations of a
single thread, unless operations are separated by an explicit
memory fence. This is the programmer’s task to ensure the
correctness of the application is not compromised by the
weak memory model. Similarly, since variables and

52 A. Lashgar and A. Baniasadi

subarrays listed in the cache directive are part of the
memory hierarchy, we assume weak memory model for the
cache directive as well.

We explain the behaviour of our implementation of the
cache directive under this weak memory model under two
major scenarios:

1 one thread has the copy, the thread writes to the copy,
and all threads attempt to read

2 multiple threads have copies, multiple threads write to
their copy, and all threads attempt to read.

The behaviour is summarised in Table 5. The behaviour is
very similar to CUDA behaviour when multiple threads
attempt to write to the same memory location
asynchronously. Here, we assume write-back policy for the
cache implementation.

The first scenario assumes that one thread has a copy of
a data in its cache, and no other thread has a copy of this
data. Write operations to this local copy (by the thread) are
immediately visible to the thread (marked as #1 in the
table). As the thread leaves the cache region, the global
memory will be updated by the latest copy available in the
cache. While the kernel is running, threads that complete
their read access before this update read the old value.
Threads that complete their read access after this update
read the new value. This behaviour is marked as undefined
in the table (#2). Once the kernel runs all the threads and
completes its execution, the global memory has the new
value rewritten by the thread (#3 in the table).

The second scenario assumes that multiple threads have
copies of a data in their cache and one or more threads write
their local copy. Since our implementation shares the cache
among a range of threads (thread block), write operations
from other threads to their local copy is visible to the range
of threads that share the cache. Accordingly, a thread might
read the value written by itself or other threads (#4 and #5
in the table). Our implementation guarantees that one write
from the threads updates the cache, but the thread that
updates the cache is unspecified. Similar to the first
scenario, once a thread leaves the cache region, the global
memory will be updated by the latest copy that is in the
cache. Once the kernel completes its execution, the global

memory has the new value written by a thread, but again the
thread is unspecified.

Overall, here the behaviour for the cached and uncached
data is the same. In either case, if multiple threads write to
the same memory location, one thread successfully updates
the global copy, but that thread is unspecified. Accordingly,
future reads from that location might return undefined
value.

7 Related work

Reyes et al. (2012) developed accULL to execute OpenACC
applications on accelerators. Two major components of
accULL are source to source compiler and runtime library.

The runtime library routines are implemented in both
CUDA and OpenCL. Tian et al. (2013) presented an
OpenACC implementation built in OpenUH (Liao et al.,
2007). Using OpenUH, they evaluated the performance of
several alternatives in mapping loop iterations to GPU
parallel threads. Lee and Vetter (2014) introduced a
framework for compiling, debugging, and profiling
OpenACC applications. They also introduced a new
directive, openarc, mapping OpenACC arrays to CUDA
memory spaces. CUDA memory spaces include shared
memory and texture memory. Hoshino et al. (2014)
investigated the impact of memory layout on the
performance of NVIDIA Kepler architecture, Intel XeonPhi,
and Intel Xeon processors. They limit their study to
directive-based programming languages. Their study shows
that having structure-of-arrays is much more efficient than
array-of-structures for Kepler and XeonPhi, while it has
minor impact on the performance of Xeon. They explain
this by the cache size of these processors (Kepler, XeonPhi,
and Xeon have 110 bytes, 128 Kbytes, and 1048 Kbytes of
cache per hardware thread, respectively). They also
introduced a new directive for changing the data layout of
multi-dimensional arrays. Herdman et al. (2012) compared
the performance of parallel and kernels constructs under
various implementations of OpenACC. They found that
most vendors focus on one of these constructs. Comparing
the quickest construct of the vendors, their performance
variations found to be below 13%.

Table 5 Behaviour of our weak memory model cache directive implementation under two scenarios: one write multiple reads and
multiple writes multiple reads

Scenario During the kernel After the kernel

Seen by threads that have a copy Seen by other threads Seen by all threads

Only one thread has a copy
and the thread writes to the
copy

(#1) New value (#2) Undefined: old value or
new value

 (#3) The new value

Multiple threads have
copies and one or more
threads write to the copy

(#4) Undefined: old value or new
value from any copy

(#5) Undefined: old value or
new value from any copy

 (#6) Undefined: the new value
from one unspecified thread

 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 53

8 Conclusions

In this paper, we studied and addressed the challenges
facing the OpenACC cache directive in NVIDIA GPUs. We
used CUDA shared memory as the software-managed cache
space for implementing the directive. We presented three
different methods and several performance optimisations for
implementing the cache directive, among which sharing the
cache space among multiple threads and parallelising cache
fetch and write routines are the most critical. Our results
also show that sharing the cache among several parallel
threads is essential to have a robust performance and
write-back cache outperforms write-through policy for the
majority of memory patterns.

We also presented a CUDA shared memory test to
understand structural hazards and performance bottlenecks
of the shared memory. Evaluating under matrix-matrix
multiplication, N-Body simulation, and Jacobi method
iteration test cases, we presented an implementation that can
perform close to hand-written CUDA.

References
AMD Inc. (2012) AMD Graphics Cores Next (GCN) Architecture

[online] https://www.amd.com/Documents/GCN_
Architecture_whitepaper.pdf (accessed 6 April 2017).

Bonati, C., Calore, E., Coscetti, S., D’elia, M., Mesiti, M.,
Negro, F., Schifano, S.F. and Tripiccione, R. (2015)
‘Development of scientific software for HPC architectures
using open ACC: the case of LQCD’, in Proceedings of 2015
IEEE/ACM 1st International Workshop on Software
Engineering for High Performance Computing in Science,
Florence, pp.9–15.

Fung, W.W.L., Sham, I., Yuan, G. and Aamodt, T.M. (2007)
‘Dynamic warp formation and scheduling for efficient
GPU control flow’, in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 40, IEEE Computer Society, Washington, DC,
USA, pp.407–420 [online] https://doi.org/10.1109
/MICRO.2007.30 (accessed 26 June 2017).

Herdman, J., Gaudin, W., McIntosh-Smith, S., Boulton, M.,
Beckingsale, D., Mallinson, A. and Jarvis, S. (2012)
‘Accelerating hydrocodes with OpenACC, OpeCL and
CUDA’, in Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis,
November, pp.465–471.

Hoshino, T., Maruyama, N. and Matsuoka, S. (2014) ‘An
OpenACC extension for data layout transformation’, in
Proceedings of the First Workshop on Accelerator
Programming Using Directives, ser. WACCPD ’14,
IEEE Press, Piscataway, NJ, USA, pp.12–18 [online]
http://dx.doi.org/10.1109/WACCPD.2014.12 (accessed 26
June 2017).

Lashgar, A. and Baniasadi, A. (2015) ‘Employing
software-managed caches in OpenACC: opportunities and
benefits’, ACM Trans. Model. Perform. Eval. Comput. Syst.,
February 2016, Vol. 1, No. 1, pp.2:1–2:34 [online]
http://doi.acm.org/10.1145/2798724 (accessed 26 June 2017).

Lashgar, A., Majidi, A. and Baniasadi, A. (2014) ‘IPMACC: open
source OpenACC to CUDA/OpenCL translator’, CoRR,
Vol. abs/1412.1127 [online] http://arxiv.org/abs/1412.1127
(accessed 26 June 2017).

Lee, S. and Vetter, J.S. (2014) ‘OpenARC: extensible OpenACC
compiler framework for directive-based accelerator
programming study’, in Proceedings of the First Workshop
on Accelerator Programming Using Directives, ser.
WACCPD ’14, IEEE Press, Piscataway, NJ, USA, pp.1–11
[online] http://dx.doi.org/10.1109/WACCPD.2014.7
(accessed 26 June 2017).

Liao, C., Hernandez, O., Chapman, B., Chen, W. and Zheng, W.
(2007) ‘Openuh: an optimizing, portable OpenMP compiler:
research articles’, Concurr. Comput.: Pract. Exper.,
December, Vol. 19, No. 18, pp.2317–2332 [online] Available:
http://dx.doi.org/10.1002/cpe.1174 (accessed 26 June 2017).

Liu, Y., Yu, Z., Eeckhout, L., Reddi, V.J., Luo, Y., Wang, X.,
Wang, Z. and Xu, C. (2016) ‘Barrier-aware-warp scheduling
for throughput processors’, in Proceedings of the 2016
International Conference on Supercomputing (ICS ‘16),
ACM, New York, NY, USA, Article 42, 12pp [online]
https://doi.org/10.1145/2925426.2926267 (accessed 26 June
2017).

Markidis, S., Gong, J., Schliephake, M., Laure, E., Hart, A.,
Henty, D., Heisey, K. and Fischer, P. (2015) ‘OpenACC
acceleration of the Nek5000 spectral element code’, The
International Journal of High Performance Computing
Applications, March, Vol. 29, No. 3, pp.311–319.

Norman, M., Larkin, J., Vose, A. and Evans, K. (2015) ‘A case
study of CUDA FORTRAN and OpenACC for an
atmospheric climate kernel’, Journal of Computational
Science, July, Vol. 9, No. 1, pp.1–6.

NVIDIA Corp. (2017a) Profiler’s User Guide: nvprof [online]
http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-
overview (accessed 19 January 2017).

NVIDIA Corp. (2017b) CUDA Downloads [online]
https://developer.nvidia.com/cuda-downloads (accessed
19 January 2017).

NVIDIA Corp. (2017c) CUDA C Programming Guide [online]
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
(accesses 19 January 2017).

OpenACC (2013) The OpenACC Application Programming
Interface Version 2.0 [online] https://www.openacc.org/
sites/default/files/inline-files/OpenACC_2_0_
specification.pdf (accessed 26 June 2017).

OpenACC (2015) The OpenACC Application Programming
Interface Version 2.5 [online] https://www.openacc.org/
sites/default/files/inline-files/OpenACC_2pt5.pdf (accessed
26 June 2017).

Reyes, R., Lopez-Rodriguez, I., Fumero, J.J. and de Sande, F.
(2012) ‘AccuLL: an OpenACC implementation with cuda and
opencl support’, in Proceedings of the 18th International
Conference on Parallel Processing, ser. Euro-Par’12,
Springer-Verlag, Berlin, Heidelberg, pp.871–882 [online]
http://dx.doi.org/10.1007/978-3-642-32820-6_86 (accessed
26 June 2017).

Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S. and
Chapman, B. (2013) ‘Compiling a high-level directive-based
programming model for GPGPUS’, in Proceedings of the
26th International Workshop on Languages and Compilers
for High Performance Computing, ser. LCPC 2013,
pp.105–120.

