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Abstract: OpenACC’s programming model presents a simple interface to programmers, offering 
a trade-off between performance and development effort. OpenACC relies on compiler 
technologies to generate efficient code and optimise the performance. The cache directive is 
among the challenges to implement directives. The cache directive allows the programmer to 
utilise the accelerator’s hardware- or software-managed caches by passing hints to the compiler. 
In this paper, we investigate the implementation aspect of cache directive under NVIDIA-like 
GPUs and propose optimisations for the CUDA backend. We use CUDA’s shared memory as the 
software-managed cache space. We first show that a straightforward implementation can be very 
inefficient, and undesirably downgrade performance. We investigate the differences between this 
implementation and hand-written CUDA alternatives and introduce the following optimisations 
to bridge the performance gap between the two: 1) improving occupancy by sharing the cache 
among several parallel threads; 2) optimising cache fetch and write routines via parallelisation 
and minimising control flow. Investigating three test cases, we show that the best cache directive 
implementation can perform very close to hand-written CUDA equivalent and improve 
performance up to 2.4× (compared to the baseline OpenACC.) 
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1 Introduction 

The OpenACC standard introduces directives, API, and the 
environment for developing applications for accelerators. 

Most of OpenACC directives and clauses map to API calls 
of low-level accelerator programming models, like CUDA 
(while we focus on CUDA in this paper, most of the 
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discussions apply to OpenCL as well). OpenACC  
can be viewed as a high-level programming layer over  
low-level accelerator programming models, simplifying 
accelerators’ software interface. Compared to low-level 
programming models, OpenACC reduces development 
effort significantly, as measured up to 11.9X in terms of 
words of code by a previous work (Herdman et al., 2012). 
On the other hand, OpenACC applications can run much 
slower than the CUDA versions. This is because CUDA 
programmers can harness all accelerator resources and 
apply advanced optimisations. Examples of these 
optimisations are exploiting CUDA shared memory as a fast 
on-chip cache for inter-thread block communication 
(Lashgar and Baniasadi, 2015) and CUDA texture or 
constant cache for improving memory bandwidth. 
OpenACC, however, mainly relies on the compiler to apply 
low-level optimisations. This is due to the fact that 
programmers are limited by the notation of OpenACC, 
which centres around expressing parallelism. Therefore,  
for OpenACC to be competitive with CUDA in  
high-performance computing, developing compiler 
optimisations are crucial. 

In this work, we investigate the compiler aspect of 
implementing the cache directive. We study various 
implementations and optimisation opportunities. We start 
with presenting ineffectiveness of a straightforward 
implementation. We show the mapping of parallel loop 
iterations to CUDA threads can be configured to share the 
cache among several loop iterations. This, in respect, 
improves cache utilisation and accelerator occupancy, 
yielding a significant speedup. We also present 
optimisations for cache fetch routine and cache write 
policies. We apply our optimisations and implement a cache 
directive, performing close to the hand-written CUDA 
version. In summary, we make the following contributions: 

 To the best of our knowledge, this is the first paper 
investigating the implementation aspect of the cache 
directive. We show that a naïve implementation hardly 
improves performance (presented in Section 2). We 
provide better understanding regarding implementation 
challenges and list compile-time optimisations and 
opportunities to enhance performance (presented in 
Section 4). 

 We introduce three methods for implementing the 
cache directive (presented in Section 3). One of the 
implementations emulates hardware cache. The other 
two cache a range of values. Methods differ in cache 
utilisation and access overhead. Employing all 
suggested optimisations on top of our best solution 
delivers performance comparable to that provided by 
the hand-written CUDA equivalent. 

 We introduce microbenchmarking to understand the 
performance of shared memory in CUDA-capable 
GPUs (presented in Section 5.1). We show that the 
shared memory layout (2D or flattened) has minor 
impact on performance. Also, we present how using a  
 

small padding in shared memory allocation can vastly 
resolve bank conflicts. We use our findings in 
optimising the cache directive implementation. 

 We evaluate our suggested implementations under three 
benchmarks (presented in Section 5.2): matrix-matrix 
multiplication, N-Body simulation, and Jacobi iterative 
method. For each benchmark we compare performance 
of the proposed cache directive implementations to 
baseline OpenACC and hand-written CUDA. We also 
estimate development effort of OpenACC and CUDA 
versions. We improve the performance of OpenACC up 
to 2.4X, and almost match that of CUDA (while 
reducing the development effort by 24%). 

The rest of this paper is organised as follows. In Section 2, 
we overview related background and discuss inefficiencies 
of a naïve cache implementation. In Section 3, we present 
our proposed implementations for the cache directive. In 
Section 4, we introduce optimisations applicable to the 
proposed implementations. In Section 5, we evaluate 
performance of the proposed methods. In Section 6, we 
discuss the limitations of our approach. In Section 7, we 
overview related work. Finally, in Section 8, we offer 
concluding remarks. 

2 Background and motivation 

OpenACC API is designed to program various accelerators 
with possibly different cache/memory hierarchies. 
Generally, the compiler is responsible for generating an 
efficient code to take advantage of the hierarchies. Static 
compiler passes can figure out specific variables or 
subarrays with an opportunity for caching. However, as 
static passes are limited, OpenACC API also offers a 
directive, allowing programmers to hint the compiler. The 
cache directive is provided to facilitate such compiler hints. 
The directive is not accelerator specific and is abstracted in 
a general form. These hints specify the range of data 
showing strong locality within individual iterations of the 
outer parallel loop, which might benefit from caching. 

The cache directive is used within a parallel or kernels 
region. The directive associates with a for loop (where the 
locality is formed) and can be used over or in the loop. The 
line below shows the syntax of the directive in C/C++: 

#pragma acc cache(var-list) 

var-list passes the list of variables and subarrays. Subarray 
specifies a particular range from an array with the following 
syntax: 

arr[lower:length] 

lower specifies the start index and length specifies the 
number of elements that should also be cached. lower is 
derived from constant and loop invariant symbols. This can 
also be an offset of the for loop induction variable. length is 
constant. 
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Figure 1 Comparing naïve and optimised cache implementations under 1D stencil kernel listed in Listing 1 (see online version  
for colours) 

 
Note: 30-element radius, 1 K, 16 K, 128 K, and 2 M elements. 

 
According to OpenACC specification (OpenACC, 2015), 
variables and subarrays listed in var-list should be fetched 
into the highest level of the cache for the body of the loop. 
We refer to the scope of the loop as cache region. In the 
cache region, all accesses to the variables and subarrays 
listed in var-list should be served from the cache. 

Listing 1 The cache directive example; one-dimensional stencil 
(see online version for colours) 

1 #pragma acc data copy(a[0:LEN],b[0:LEN]) 
2 for(n=0; n<K; ++n){ 
3  #pragma acc parallel loop 
4  for(i=1; i<LEN–1; ++i){ 
5   int lower = i–1, upper = i+1; 
6   float sum = 0; 
7   #pragma acc cache(a[(i–1):3]) 
8   for(j=lower; j<=upper; ++j){ 
9    sum += a[j]; 
10   } 
11   b[i] = sum/(upper–lower+1); 
12  } 
13  float *tmp=a; a=b; b=tmp; 
14 } 

Listing 1 shows an example of the cache directive. The 
example is based on one-dimensional stencil algorithm. 1D 
stencil smooths the values of array iteratively, repeating for 
certain number of iterations, here K times. In this example, 
the array length and 1D stencil radius are LEN and one 
element, respectively. The new value of every element is 
calculated as the average of three elements; the element and 
right and left neighbours. The programmer can provide a 
hint to the compiler to highlight this spatial locality within 
each iteration of the parallel loop. On line #7, the cache 
directive hints the compiler that each iteration of the loop 
requires three elements of a[], starting from i–1. Provided 
with this hint, the compiler can potentially cache this data in 
registers, software-managed cache, or read-only cache 

(depending on the target). Also, depending on the 
accelerator-specific optimisation strategies, the compiler 
can ignore the hint, which is not the focus of this study. 

Figure 1 compares the performance of two different 
cache directive implementations (naïve and optimised) for 
the code listed in Listing 1. These two implementations are 
compared to the baseline (which does not use the cache 
directive). The naïve implementation isolates cache space to 
each parallel iteration of the loop. The optimised 
implementation is equipped with optimisations later 
introduced in this paper and exploits the opportunity for 
sharing cached elements among parallel iterations. 
Consequently, optimised delivers more efficient cache 
implementation through better occupancy, cache sharing, 
and initial fetch parallelisation. We explain each of these 
optimisations in the rest of the paper. This figure 
emphasises the importance of optimising cache 
implementation. 

3 Implementations 

In this section, we present three cache directive 
implementations for accelerators employing software-
managed cache. We discuss methods for the case where the 
list of variables consists of subarrays (simplified versions of 
the presented methods are applicable for scalar variables.). 
For implementing the cache directive, the compiler requires 
two pieces of information: 

1 the range of the data to be cached 

2 the array accesses (within the cache region) that their 
array index value falls within the subarray range (we 
assume pointer aliasing is not the case and pointers are 
declared as restricted type in the accelerator region, 
using C’s restrict keyword). 

Using the information provided through the directive, the 
compiler knows the subarray; data that should be cached. 
To gather the second piece of information, the compiler 
must examine the index of every array access in the cache 
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region. If the compiler could statically assure that the index 
falls within the cache range, the array access might simply 
be replaced by a cache access in the code. Otherwise, the 
compiler should generate a code to decide to fetch from the 
cache or global memory on-the-fly. Therefore, depending 
on the code, the compiler may generate a different control 
flow. As we show in this paper, this can be very expensive 
to calculate in runtime. Starting from OpenACC 2.5 
(OpenACC, 2015), the following restriction has been added 
to the cache directive specification: within the cache region, 
all references to an array listed in the cache directive must 
refer to the range specified in the cache directive. Our first 
two proposed methods (emulating hardware cache – EHC 
and range-based conservative – RBC) comply with the older 
OpenACC (2013) specification and are suitable for 
applications written in older OpenACC versions (e.g., v2.0). 
Our third method takes advantage of the restriction added in 
OpenACC 2.5 to highly optimise the implementation. 

The first method is an emulation of hardware-managed 
cache through software-managed cache. To this end, data 
and tag arrays are maintained in the software-managed 
cache. Operations of hardware cache are emulated using 
these two arrays. The second and third methods are  
range-based caching. The second method stores the lower 
and length specifiers and checks if the value of the index 
falls within this range. The third method assumes all 
indexes fall into the fetched range and uses a simple 
operation to map array indexes to cache locations. Below, 
we elaborate on these methods. 

3.1 Emulating hardware cache 

3.1.1 Overview 

Two arrays are allocated in the software-managed cache; 
data and tag. Data array stores the elements of the subarray. 
Tag array stores the indexes of subarray elements that are 
currently cached. Tag array can be direct-mapped,  
set-associative, or fully-associative to allow caching the 
entire or part of the subarray transparently. The decision 
depends on the subarray size and accelerator capabilities. 

3.1.2 Pros and cons 

The main advantage of this method is the ability to adapt to 
the available cache size. If the cache directive demands a 
large space and the accelerator’s cache size is small, this 
method allows storing only a portion of the subarray (other 
methods might ignore the directive in this case). There are 
two disadvantages with this method though. First, storing 
the tag array in the software-managed cache lowers the 
occupancy of the accelerator and limits concurrent threads. 
Second, at least two cache accesses (tag plus data) are made 
for every array access, increasing the read/write delay 
significantly. In terms of operations, each global memory 
access is replaced by two cache accesses and few other 
logical/arithmetic and control operations. This significant 
overhead impairs the performance advantages as the total 

latency of the cache hit can exceed the global memory 
latency (depending on the accelerator’s design). 

3.2 Range-based conservative 

3.2.1 Overview 

One array and two pointers are allocated in the  
software-managed cache. The array stores the subarray. 
Two pointers keep the range of indexes stored in the cache. 
One of the pointers points to the start index and the other 
points to the end index (or the offset from the start). To 
check if the array index falls within the subarray range or 
not, the index is checked against the range kept in pointers. 
Two comparisons evaluate this; index ≥ start && index < 
end. If the condition holds, data is fetched from the cache, 
otherwise from global memory. Moreover, if the condition 
holds, the index should be mapped from global memory to 
cache space. The operation for this mapping is a subtraction 
(index-start). 

3.2.2 Pros and cons 

The cache directive always points to a stride of data. This 
method exploits the fact that elements of subarray are a row 
of consecutive elements from the original array and 
minimises the overhead for maintaining the track of the 
cached data (compared to EHC). The method stores two 
pointers pointing to the start and end of the stride. The 
method can be extended to multi-dimensional subarrays by 
storing a pair of pointers per dimension. The only 
disadvantage of this method is the performance overhead of 
the control flow statement generated for checking whether 
the index falls within the range of stride or not. This  
control statement might be an expensive operation for 
multi-dimensional subarrays (2 + 1 logical ops. plus a 
branch for 1D, 4 + 3 logical ops. plus a branch for 2D, etc.). 

3.3 Range-based intelligent 

3.3.1 Overview 

This method improves RBC one step further and assumes 
array indexes always fall within the subarray range. This 
avoids the costly control flow statements for evaluating 
whether the data is in the cache or not. The compiler may 
use this method if the compiler passes are able to find the 
range of values of the index statically. 

3.3.2 Pros and cons 

This method has significant performance advantage over 
RBC as it avoids the costly control statements for checking 
if the data exists in the cache or not. Assuring that the index 
always falls within the fetched stride was not a trivial 
compiler pass in the past. The restrictions added in the latest 
OpenACC version have addressed this by limiting the 
subarray references. Accordingly, the latest version of 
OpenACC (2015) (2.5 released in November 2015) adds a  
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restriction to cache directive requiring all references to the 
subarray lie within the region being cached. This essentially 
means range-based intelligent (RBI) can be used with all 
applications that follow OpenACC ≥ 2.5. 

3.4 Example 

Listings 2 and 3 show the CUDA implementations of the 
methods. Three procedures are implemented for each 
method: 

1 __cache_fetch() 

2 __cache_read() 

3 __cache_write() (as a performance issue, these 
procedures are declared inline to avoid procedure calls 
within the accelerator region). 

The accelerator code is generated to call __cache_fetch() 
early before the cache region starts. This procedure is 
responsible for fetching the data into the cache.Within the 
cache region, the compiler replaces every array read with 
__cache_read() call and array write statement with 
__cache_write() call. For these implementations, we assume 
a write-through cache (alternative is discussed in  
Section 4.3.). 

Listing 2 shows the CUDA implementation of EHC 
where the tag array models a direct-map cache. For this 
example, we assume a 256-entry cache. In this case, 
mapping from global memory indexes to cache space is a 
single logical operation. Listing 3 shows the CUDA 
implementation of RBC. RBI implementation is the same as 
Listing 3, except the control statement in __cache_read() 
and __cache_write() is removed as the condition of the 
control statement is always true in RBI. In this listing, the 
mapping is an arithmetic operation; subtracting index  
from the start pointer. __cache_fetch() routine in all 
implementations has a for loop statement. Later in  
Section 4.2.4, we discuss opportunities to accelerate this 
loop through parallelisation. 

4 Implementation optimisations 

In this section, we introduce optimisations for 
implementations introduced in the previous section. 
Specifically, we present optimisations for cache fetch 
routine, cache sharing, cache writes, and minimising index 
mapping overhead. 

Listing 2 Implementation of EHC in CUDA (see online version for colours) 

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr, 
2  unsigned st_idx, unsigned en_idx){ 
3   for(unsigned i=st_idx; i<en_idx; i++){ 
4    unsigned cache_idx=acc_idx&0x0ff; //direct map 
5    c_ptr[cache_idx]=g_ptr[i];  // update data array 
6    ctag_ptr[cache_idx]=i;  // update tag array 
7   } 
8 } 
9 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr, 
10  unsigned st_idx, unsigned en_idx, unsigned acc_idx){ 
11   unsigned cache_idx=acc_idx&0x0ff; //direct map 
12   if(ctag_ptr[cache_idx]==acc_idx){ 
13    return c_ptr[cache_idx]; // read from cache 
14   }else{ 
15    c_ptr[cache_idx]=g_ptr[acc_idx]; // read from global memory, update data 
16    ctag_ptr[cache_idx]=acc_idx; // and tag arrays 
17    return c_ptr[cache_idx]; // read from cache 
18   } 
19 } 
20 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr, 
21  unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){ 
22   unsigned cache_idx=acc_idx&0x0ff; //direct map 
23   if(ctag_ptr[cache_idx]!=acc_idx) 
24    ctag_ptr[cache_idx]=acc_idx; // update tag 
25   g_ptr[acc_idx] =c_ptr[cache_idx] =value; // write–through 
26 } 
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Listing 3 Implementation of RBC in CUDA (see online version for colours) 

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr, 
2  unsigned st_idx, unsigned en_idx){ 
3   for(unsigned i=st_idx; i<en_idx; i++) 
4    c_ptr[i–st_idx]=g_ptr[i]; 
5 } 
6 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr, 
7  unsigned st_idx, unsigned en_idx, unsigned acc_idx){ 
8   if(acc_idx>=st_idx && acc_idx<en_idx){ 
9    unsigned cache_idx=acc_idx–st_idx; 
10    return c_ptr[cache_idx]; 
11   }else 
12    return g_ptr[acc_idx]; 
13 } 
14 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr, 
15  unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){ 
16   if(acc_idx>=st_idx && acc_idx<en_idx){ 
17    unsigned cache_idx=acc_idx–st_idx; 
18    c_ptr[cache_idx]=value; 
19   } 
20   g_ptr[acc_idx]=value; 
21 } 

 
4.1 Cache fetch routine 

The cache fetch routine is called before cache region starts. 
This is done once per parallel instance of the loop which the 
cache directive is associated with (the fetch routine might 
be called multiple times, if located in a sequential loop). If 
the cache region has long latency, this routine’s 
performance may not be the limiting factor. Otherwise, if 
the cache region is short, the performance of this routine is 
critical to the overall performance. 

Performing our evaluations under NVIDIA GPUs, we 
found that minimising control flow statements comes with 
significant performance advantage. The fetch routine has a 
for loop statement (as presented earlier in Section 3.4) 
which imposes control flow overhead. Loop unrolling can 
be employed to reduce this overhead, as the length of the 
loop is a compile-time constant (equal to the length of the 
subarray). Also, the compiler can reduce this overhead 
further by sharing a single for loop among multiple subarray 
fetches. Compiler heuristics can decide if the loop can be 
shared among multiple subarrays. For example, the 
compiler can read the cache directive and group the 
subarrays having equal length. Subsequently, the grouped 
subarrays can share the same for loop, as the number of 
iterations for fetching the data is the same for all of them. 

Another opportunity to optimise the for loop is to 
parallelise the loop. A number of parallel threads, e.g., equal 
to the size of the thread block, can be employed to fetch the 
data into the software-managed cache. If the compiler is not 
using parallel threads for another task, parallel fetch can 
simply achieve this. However, if parallel threads have 

already been employed to execute parallel tasks, then the 
compiler should assure that while threads collaborate for 
fetching the data, they maintain a separated view of the 
cache, especially in the case of cache writes. We explain 
this further in Section 4.2. 

Listing 4 Example of inner and outer parallel loops around 
cache (see online version for colours) 

1 #pragma acc parallel loop 
2 for(i=0; i<N; i++){ // OUTER LOOP: 
3  // depending on X and Y, the subarray 
4  // may or may not be shared among iterations 
5  #pragma acc cache(subarray[X:Y]) 
6  { // beginning of cache region 
7   #pragma acc loop 
8   for(j=0; j<N; j++){ // INNER LOOP: 
9    // the subarray is shared among all iterations 
10   } 
11  } // end of cache region 
12 } 

4.2 Cache sharing 

Considering the relative nesting of the cache directive in 
respect to parallel loops, there are two types of parallel 
loops: outer parallel loops and inner parallel loops. 
Iterations of inner parallel loops already share the same 
data. In this section, we introduce a method to find data 
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sharing among the iterations of outer parallel loops.  
Listing 4 clarifies outer and inner loops in an example. 

The cache directive is located within one (or more) 
outer parallel loop(s) and the cache space should be 
allocated once per parallel instance of outer parallel loop(s). 
The compiler can optimise cache utilisation by unifying the 
allocations of common data and sharing them among 
parallel iterations. When it comes to cache directive 
implementations in CUDA, sharing data between parallel 
iterations is efficiently feasible by mapping parallel 
iterations (in OpenACC) to threads of the same thread block 
(in CUDA), sharing data through CUDA shared memory. 

We have different methods for cache sharing under 
EHC, RBC, and RBI. Under EHC, cache sharing can be 
achieved by sharing one single larger data and tag arrays 
among all iterations. The complexity is in efficiently 
managing consistency of data and tag arrays, considering 
parallel accesses to the cache may occur from different 
iterations. Currently, the only mechanism in CUDA to 
maintain the consistency is to update data and tag arrays 
atomically using atomic operations. Since this severely 
slows down the performance, we found cache sharing 
unpromising in EHC. Below, we discuss cache sharing 
method under RBC and RBI. 

We decompose the cache sharing problem under RBC 
and RBI to five subproblems: 

1 extract sharing 

2 find sharing width 

3 renew cache scope 

4 fetch collaboratively 

5 optimise cache size. 

Below, we discuss each problem. 

4.2.1 Extract sharing 

The problem is to map outer parallel loops (loops that are 
marked by the OpenACC loop directive as parallelisable) to 
thread hierarchies with the constraint of maximising the 
subarray overlap among threads of the thread block.  
Listing 5 presents a compiler pass as a solution to this 
problem. The problem inputs are the cache directive (code 
block where pragma is injected and list of subarrays), outer 
parallel loops (loop handle, induction variable, and 
increment step), and the kernel code. The problem output is 
the mapping of loop iterations to CUDA thread block 
dimensions. 

Listing 5 Compiler pass that extracts cache sharing opportunity and suggests a mapping to maximise the overlap among subarrays of 
consecutive iterations (see online version for colours) 

Inputs: 
  cache: the code block id of the cache region 
 subarrays: array of subarrays listed in the cache directive 
    Ls: array of outer parallel loops, indexed by induction variables 
   IDs: array of induction variables associated with outer parallel loops 
  code: the kernel code 
Output: 
   mapping: structure showing the parallel loops to kernel dimensions mapping 
Begin 
 final_mapping = [] 
 skipped_subarray = [] 
 for subarray in subarrays 
  unmapped_dimensions = [x, y, z] 
  suba_mapping = [] 
  for dimension in subarray 
   lower, length <– get_specifiers(dimension) 
   if is_linear(lower, IDs, code, Ls) 
    rate, inductionVar, offset <– get_linear_params(lower, IDs, code, Ls) 
    // map parallel loop iterated by inductionVar to an unmapped dimension 
    suba_mapping.push(Ls[inductionVar] –> unmapped_dimension.pop()) 
  if not is_contrary(final_mapping, suba_mapping) 
   mapping = merge(final_mapping, suba_mapping) 
  else 
   skipped_subarrays.push(subarray) 
 return final_mapping 
End 
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The pass iterates over the subarrays listed in the cache 
directive. For each dimension of the subarray (dealing with 
multi-dimensional subarrays), lower and length specifiers 
are read. If lower is a linear function of one single induction 
variable, consecutive iterations of the loop corresponding to 
the induction variable are considered for sharing (see 
examples in Table 1). is_linear() function returns true if: 

1 lower specifier is a linear function of an induction 
variable 

2 the increment step of the corresponding loop is linear 
(e.g., i+=1, i-=1, i+=7, etc.). 

If lower is linear, it should be in rate  inductionVar + offset 
form, where inductionVar is an induction variable and rate 
and offset are expressions independent of any induction 
variable. Forcing the increment step to be linear assures that 
the neighbour threads cache subsequent elements, forming a 
sharing range that is densely populated by the data from 
neighbour threads (consecutive iterations). 

get_linear_params() returns rate, inductionVar, and 
offset. suba_mapping is updated to map the parallel loop 
iterated by inductionVar to unmapped thread block 
dimensions, starting with x dimension. is_contrary() returns 
true if the suba_mapping that is found here contrasts with 
the mapping recorded in final_mapping. If this is the case, 
subarray is pushed to skipped_subarrays. Cache sharing 
optimisations will be skipped for the subarrays in 
skipped_subarrays. Otherwise, final_mapping is updated to 
be merged with suba_mapping. 

Table 1 Example of cache sharing when lower specifier is a 
linear function of an induction variable 

Subarray Lower Length Ranges mapped 
to the iterations 

Shared 
range 

a[i:3] i 3 T0 –> 0 to 2  
T2 –> 1 to 3  

T2 –> 2 to 4, etc. 

T0 to T2 
–> 0 to 
4, etc. 

a[2*i+1:3] 2*i+1 3 T0 –> 1 to 3  
T1 –> 3 to 5  

T2 –> 5 to 7, etc. 

T0 to T2 
–> 1 to 
7, etc. 

a[3*i+4:5] 3*i+4 5 T0 –> 4 to 8  
T1 –> 7 to 11  

T2 –> 10 to 14, 
etc. 

T0 to T2 
–> 8 to 
14, etc. 

Note: Assumptions: i is an induction variable of a 
parallel loop, increment step of the loop iterated 
by i is +1, and thread block size is 3. 

4.2.2 Find sharing width 

Sharing width is referred to the number of iterations (or 
threads) that share one common cache. Ideally, sharing 
width is equal to the thread block size. This is the case when 
the total number of loop iterations is multiple of the thread 
block size. However, since the total number of loop 
iterations is a runtime variable mostly, compiler cannot 
statically assure this number is multiple of thread block size. 
We propose three different methods to find the sharing 

width in CUDA; using synchronisation, kernel arguments, 
or fixed. 

 Synchronisation: This method counts the number of 
threads that have reached the cache region. To count 
the number of threads, __syncthreads_count(bool flag) 
device function from CUDA API is used. To count the 
number of threads along x dimension of the thread 
block, __syncthreads_count is called with the argument 
threadIdx.y==0 && threadIdx.z==0. Similarly, for y 
and z dimensions of the thread block, the function is 
called with threadIdx.x==0 && threadIdx.z==0 and 
threadIdx.x==0 && threadIdx.y==0 arguments, 
respectively. 

 Kernel arguments: This method exploits the fact that 
only the last thread blocks across every dimension may 
have a sharing width different than the thread block 
size. This width can be pre-calculated and passed to the 
kernel as an argument, knowing the total number of 
iterations and the thread block size upon kernel launch. 
Within the kernel, threads check if they belong to the 
last thread block of the dimension. If yes, sharing width 
is set to the value passed as the argument. Otherwise, 
sharing width is equal to the thread block size. This 
method has a performance advantage over the first 
method as it avoids synchronisation and reduction. 

 Fixed: This method simply sets the sharing width equal 
to the thread block size. This method is only applicable 
in the case where compiler can statically assure that the 
total number of loop iterations is multiple of the thread 
block size. 

4.2.3 Renew cache scope 

From the notation of the cache directive, every thread 
knows the range from lower to lower + length is cached. For 
RBC and RBI, start and end pointers are set to these values. 
However, when threads of the thread block are sharing the 
cache, these pointers should be recalculated, since a larger 
data range is cached in this case. We propose two different 
methods to recalculate pointers: communicating and private. 

 Communicating: This method shares pointers among 
threads of the thread block. To share pointers, these are 
declared as CUDA __shared__ variables. To set 
pointers consistently, one thread is to set start and 
another thread is to set end. start pointer is set to lower 
by the thread that is demanding subarray’s elements 
located at the lowest address. This is the first thread 
within the sharing width, if the corresponding loop has 
increasing increment step (e.g., +=1, +=3, etc.). 
Otherwise, if the corresponding loop has decreasing 
increment step (e.g., –=1, –=3, etc.), this thread is the 
last thread within the sharing width. Similarly, end 
pointer is set to lower + length by the thread that is 
demanding subarray’s elements located at the highest 
address. This is the last thread within the sharing width, 
if the corresponding loop has increasing increment step. 
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Otherwise, if the corresponding loop has decreasing 
increment step, this thread is the first thread within the 
sharing width. 

 Private: This method allocates start and end pointers 
privately for each thread. 

Following equations are used to recalculate start and end 
pointers privately: 

 start lower rate threadID  

( 1)  ( 1)end start length rate sharingWidth  

where lower, rate, threadID, length, and sharingWidth 
parameters are explained below. lower and length are 
specifiers of the subarray passed to the cache directive. rate 
is obtained from lower by using get_linear_params() 
function explained in Section 4.2.1. sharingWidth is the 
number of active threads in the cache region obtained by the 
methods discussed in Section 4.2.2. threadID is the thread 
ID within the thread block, ranging from 0 to sharingWidth 
– 1 in the cache region. Equations above are applicable to 
the case where lower is a function of an induction variable 
of a loop with an increasing increment step. Under 
decreasing increment step, following equations are used: 

  ( 1)start lower rate threadID rate sharingWidth  

 ( 1)end lower rate threadID length  

4.2.4 Fetch collaboratively 

If cache sharing is applicable, threads of the thread block 
share one common data in shared memory. Since the 
common data is composed of words located at consecutive 
addresses, threads of the thread block can be used to 
efficiently fetch the data using few well-coalesced  
accesses in parallel. To perform this optimisation, only 
__cache_fetch() routine in Listing 3 needs to be modified. 
The for loop statement should be modified to: 

( . _ ;
_ ;  . )

for unsignedi threadIdx x st idx
i en idx i blockDim x

 

This is for the case where the subarray is one-dimensional 
and the parallel loop is mapped to x dimension of the thread 
block. For multidimensional subarrays, this loop is 
replicated but modified to reflect correct mapping of 
parallel loops to thread block dimensions. 

4.2.5 Optimise cache size 

When cache is not shared, each thread demands length 
elements from shared memory. While sharing the cache 
among threads of the thread block, it might seems length  
sharingWidth elements from shared memory are required. 
This is correct as long as subarrays of consecutive loop 
iterations are located back to back in the memory. 
Otherwise, if there is an overlap or gap among subarrays, 
this number overestimates or underestimates the exact size. 
We use the following formula to optimise the cache size: 

( 1)length rate sharingWidth  

where sharingWidth is the number of active threads in the 
cache region obtained by the methods discussed in  
Section 4.2.2. length is a specifier of subarray passed in to 
the cache directive. rate is obtained from lower by using 
get_linear_params() function explained in Section 4.2.1. 

4.3 Cache write policy 

Writing to the subarray in the cache region invokes the 
write routine. We assume two alternative policies for cache 
write: write-back and write-through. Write-back buffers 
cache writes and writes final changes back to DRAM at the 
end of the cache region. Write-through writes every 
intermediate write to both cache and global memory.  
Write-back tends to perform better under dense and regular 
write patterns whereas write-through performs better under 
sparse irregular write patterns. We compare performance of 
these two implementations in Section 5.3. 

If the compiler implements write-back cache, an 
additional routine should be invoked at the end of the cache 
region to write the dirty content of the cache to global 
memory. For tracking the dirty lines, the compiler can 
decide to: 

1 keep track of the dirty lines through a mask 

2 assume all the lines are dirty. 

Although keeping track of dirty lines can reduce the total 
amount of write operations, the compiler can instead use the 
brute-force write-back on the GPUs for two reasons.  
First, tracking dirty lines demands extra space from the 
software-manage cache to store the dirty mask. This, in 
turn, lowers the occupancy of GPU. Second, the write-back 
routine can include extra control flow statements to filter 
out dirty lines. These control flow statements can harm 
performance (e.g., limiting ILP and loop unrolling). On the 
other hand, employing a dirty mask is preferred, if the size 
of the cache is large. In this case, the dirty mask version is 
more efficient than the brute-force approach. In this paper, 
we assume brute-force write-back cache. 

4.4 Index mapping 

As we discussed in Section 3, mapping global memory 
indexes to shared memory indexes involves a few 
operations. To mitigate this overhead, the compiler can 
allocate a register to store the output of operations for the 
life time of the cache region, if the value of index is not 
changing in the cache region. The compiler can also reuse 
this register for other array accesses, if the array indexes 
have the same value. This optimisation saves register usage 
and mitigates index mapping overhead. 

5 Experimental results 

In this section, we first report the experiments performed  
to understand shared memory and optimise our 
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implementation on the target GPU. Then we study the 
performance of methods introduced in Section 3, under 
three test cases. This is followed by investigating 
performance of different cache write policies. Finally, we 
evaluate performance portability of our implementation. 

We use IPMACC compiler (Lashgar et al., 2014) for 
compiling OpenACC applications and implementing the 
cache directive. IPMACC framework translates OpenACC 
to CUDA and uses NVIDIA nvcc compiler to generate GPU 
binaries. We run evaluations under NVIDIA Tesla K20c 
GPU. The execution time of the kernel is measured by 
nvprof (NVIDIA Corp., 2017a). Every number is harmonic 
mean of 30 independent samples. 

5.1 Cache performance sensitivity 

Software-managed cache in NVIDIA GPUs (also called 
shared memory) employs multiple banks to deliver high 
bandwidth. Every generation of NVIDIA GPUs has a 

certain configuration of shared memory; namely a specific 
number of banks and the bank line size. A bank conflict 
occurs once a warp (group of threads executing instructions 
in lock-step over the SIMD). Executes a shared memory 
instruction and threads of a warp need different rows of the 
same bank. Bank conflicts cause access serialisation if the 
bank does not have enough read/write ports to deliver data 
in parallel. We develop a CUDA microbenchmark to 
evaluate the impact of several parameters on bank conflict. 
Knowing these impacts delivers deeper insight on 
optimising the cache directive implementations and 
enhancing their performance. This test should run separately 
for every backend supported by the compiler to allow 
hardware-specific optimisations. Below, we first review the 
microbenchmark structure, followed by presenting results 
obtained on the GPU of this study. Finally, we summarise 
the findings that help optimising the cache directive 
implementation. 

Listing 6 CUDA microbenchmark for understanding shared memory (see online version for colours) 

// compiled for different TYPE, ITER, PAD, XY 
__global__ void kernel(TYPE *GLB, int size){ 
 __shared__ int SHD[16+PAD] [16+PAD]; 
 // mapping config to shared memory 
 #ifdef XY 
 int row=threadIdx.x, rows=blockDim.x; 
 int col=threadIdx.y, cols=blockDim.y; 
 #else 
 int row=threadIdx.y, rows=blockDim.y; 
 int col=threadIdx.x, cols=blockDim.x; 
 #endif 
 // fetch 
 int index=(threadIdx.x+blockIdx.x*blockDim.x)*size+ 
  (threadIdx.y+blockIdx.y*blockDim.y); 
 SHD[row][col]=GLB[index]; 
 // computation core 
 int S = (row==(rows–1))?row:row+1; 
 int N = (row==0) ?0 :row–1; 
 int W = (col==(cols–1))?col:col+1; 
 int E = (col==0) ?0 :col–1; 
 int k=0; TYPE sum=0; 
 for(k=0; k<ITER; k++){ 
  sum=(SHD[row][col]+ SHD[S][col]+ SHD[N][col]+ SHD[row][E]+ SHD[row][W])*0.8; 
  __syncthreads(); SHD[row][col]=sum; __syncthreads(); 
 } 
 // write–back 
 GLB[index]=SHD[row][col]; 
} 

 

 



 Efficient implementation of OpenACC cache directive on NVIDIA GPUs 45 

Figure 2 Comparing execution time of kernel under various shared memory configurations (see online version for colours) 

 

 
5.1.1 Microbenchmark setup 

We assume one two-dimensional shared memory array per 
thread block. We also assume two-dimensional thread 
blocks. We develop a simple kernel in which every thread 
reads four locations of shared memory and writes one 
location. These reads/writes are in a loop iterated several 
times. The code is shown in Listing 6. We report the 
execution time of this kernel and evaluate the impact of the 
following parameters in the kernel body: 

 Datatype size (TYPE): The datatype size of shared 
memory array is the number of bytes allocated for each 
element of array. Variations in datatype size impact 
bank conflict since it determines the layout of array in 
the shared memory (e.g., one element per bank, two 
elements per bank, etc.). 

 2D array allocation: We investigate two alternatives in 
allocating 2D shared memory: 2D array notation or 1D 
array notation (flattened notation). 2D array notation is 
simpler in indexing and code readability. We are also 
interested to understand whether flattened notation has 
a different layout in the shared memory from 2D array. 

 Padding (PAD): When the size of shared memory array 
is multiple of memory banks, adding a small padding to 
the array can mitigate the bank conflict. The padding 
increases the row pitch, spreading the columns of a row 
across different banks. 

 Access pattern: Since bank conflict only occurs among 
the threads of the same warp, it is important to mitigate 
bank conflict algorithmically. We evaluate the impact 
of these algorithmic optimisations by mapping threads 
of the thread block to different dimensions of the 
shared memory array. Operating in XY mapping, 
threads along the x dimension of the thread block are 
mapped to the first dimension of the shared memory 
array and threads along the y dimension are mapped to 
the second dimension. YX mapping reverses this as 
threads along x and y dimensions are mapped to the 
second and first dimensions of the array, respectively. 

 Iterations (ITER): Number of iterations of the loop in 
the kernel body. This number indicates the ratio of 
shared memory accesses to global memory accesses. 

5.1.2 Results 

Figure 2 reports the execution time of the kernel in Listing 6 
under various configurations. Bars report the execution time 
for three different ITERs (1, 2, and 4), two TYPEs (4-byte 
integer and 8-byte floating-point), two array allocation 
schemes (2D and flattened 2D), two shared memory access 
patterns (XY and YX), and two padding sizes (zero and 
one). 

As shown in the figure, TYPE has modest impact on the 
execution time. Also, the allocation scheme has minor 
impact on performance. The latter suggests that the layout 
of 2D array in the shared memory banks is similar to that of 
the flattened 2D array. 

Access pattern, however, impacts performance 
significantly. In this benchmark, YX mapping delivers a 
better performance compared to XY. This is explained by 
how threads are grouped into warps. Warps are occupied 
first by the threads along the x dimension and then by the 
threads along y. Therefore, threads along x should access 
consecutive words in order to reduce shared memory bank 
conflict. This is precisely what YX mapping does. 

As shown in the figure, adding a padding to the array 
can have an impact similar to that of access pattern tunings, 
lowering the execution time roughly the same amount. 
Adding a padding to the array can lower the execution time 
by 57% and 56% under double and int, respectively. It 
should be noted that under the cases where the array is 
padded there is still room for improvement as evidenced by 
the results. Under one padding, modifying the code 
algorithmically for reducing bank conflict, as comparing 
XY to YX shows, can further lower the execution time by 
8% (for both int and double). 

Increasing the number of iterations (ITER) increases the 
importance of the shared memory performance in the 
overall performance. For larger iterations, the impact of 
access pattern and padding is more significant. For example, 
under one iteration, the gap between zero-padding and  
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one-padding is 23%. This gap grows to 37% and 55% under 
two and four iterations, respectively. 

5.1.3 Summary of findings 

We make the following conclusions from the findings 
presented in this section and use them to optimise our 
implementations. First, the layout of 2D arrays allocated in 
the shared memory is found to be the same as flattened 2D 
arrays. Since no performance advantage is found in using 
flattened 2D arrays, we use multi-dimensional arrays for 
caching multi-dimensional subarrays to simplify array 
indexing code generation. Second, our implementation 
adjusts mapping of parallel loops to x and y dimensions of 
the thread blocks with the goal of having threads along x 
accessing consecutive bytes. We use a heuristic to map the 
most inner parallel loop to the x dimension of the grid. This 
is due to the fact that, intuitively, the inner loop has stronger 
locality and traverses arrays column-wise. Third, adding a 
small padding can pay off if other compiler optimisations do 
not allow mapping inner parallel loops over x dimension. 

5.2 Test cases 

Here, we investigate the cache directive under three 
different benchmarks; matrix-matrix multiplication 
(GEMM), N-Body simulation, and Jacobi iterative method. 
For each benchmark, we compare the performance of four 
implementations (we found EHC implementation very slow 
and hence we avoid further discussion on this.): 

1 OpenACC without cache directive 

2 OpenACC plus cache directive implemented using 
RBC 

3 OpenACC plus cache directive implemented using RBI 

4 hand-written CUDA version. 

Table 2 Development effort of the benchmarks under 
OpenACC, OpenACC plus cache, and CUDA 
implementations 

 OpenACC OpenACC+cache CUDA 

GEMM 84 94 116 
N-Body 81 84 108 
Jacobi 145 152 189 

All cache-based implementations are optimised with the 
parallel cache fetch and cache sharing optimisations 
discussed in Section 4. Under RBC and RBI, we use kernel 
arguments as the default method for finding sharing width 
(discussed in Section 4.2.2) and we use private as the 
default method for renewing cache scope (discussed in 
Section 4.2.3). 

Below, we first compare development efforts of these 
four implementations. Next, we compare performance of 
these implementations. Then, we investigate how these 
implementations utilise GPU resources, e.g., register file 

and software-managed cache. Finally, we investigate the 
impact of alternative optimisations on the speedup. 

5.2.1 Development effort 

We wrote all versions of GEMM and Jacobi. For N-Body 
Simulation, we used the CUDA version available in GPU 
Computing SDK (NVIDIA Corp., 2017b) and modified the 
serial version available there to obtain OpenACC versions. 
We did our best to hand-optimise using the techniques that 
we are aware of. Table 2 compares the development effort 
of GEMM, NBody, and Jacobi under OpenACC, OpenACC 
plus cache, and CUDA implementations. Development 
effort is measured in terms of the number of statements, 
including declaration, control, loop, return, and assignment 
statements. As reported, OpenACC plus cache can be 
obtained by modifying 3 to 10 lines of the baseline 
OpenACC version. 

5.2.2 Performance 

5.2.2.1 GEMM 

Cache-based OpenACC implementations iteratively  
fetch 16 × 16 tiles of two input matrices into the  
software-managed cache using the cache directive and keep 
the intermediate results (sum of products) in registers. The 
CUDA version also implements the same algorithm  
using shared memory notation. Figure 3 compares the 
performance of these implementations under various square 
matrix sizes, compared to the baseline OpenACC (without 
cache). A similar trend can be observed under different 
input sizes. RBI outperforms OpenACC by nearly 2.4× and 
performs very close to CUDA. RBC, RBI, and CUDA 
reduce the global memory traffic significantly, compared to 
OpenACC. By fetching the tiles of input matrices into 
software-managed cache, these implementations maximise 
memory access coalescing. Also, these implementations 
exploit the locality among neighbour threads to minimise 
redundant memory fetches. Using nvprof (NVIDIA Corp., 
2017a), we found that RBI reduces the number of global 
memory loads by 12× (under 1,024 × 1,024 matrices), 
compared to OpenACC (the very same improvement is 
observed under RBC and CUDA too). Using RBC, the 
compiler generates a code to check the memory addresses 
dynamically and to find out if the address falls within the 
subarray range or not. If the address falls within the 
subarray range, the data is fetched from the cache. 
Otherwise, the data is fetched from the global memory. 
Under RBI, however, the compiler static passes assure that 
dynamic memory accesses always fall in the subarray range 
(if violated, the program can generate incorrect output). 
Therefore, dynamic checking for the address range is 
avoided. This explains why RBI always performs faster than 
RBC. As shown in Figure 3, RBC is 2.67× slower than RBI. 
This gap is caused by RBC’s extra logical and control flow 
instructions per memory access, negating the gain achieved 
from using the software-managed cache. For the 2D 
subarray of this benchmark, these extra instructions are one 
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branch, four comparisons, and three ANDs. We discuss this 
issue further in Section 6. 

5.2.2.2 N-Body simulation 

Figure 4 compares four implementations of N-Body 
simulation under different problem sizes. To improve 
performance using software-managed cache, interaction 
between masses are computed tile-by-tile. Bodies are 
grouped into tiles and fetched into software-managed cache 
one tile at a time. This lowers redundant global memory 
instructions and DRAM accesses. RBI outperforms baseline 
OpenACC by 92%–111%. While RBI performs very close 
to CUDA, there is still a gap between them (8%–10%). This 
gap is mainly the result of efficient implementation of the 
fetch routine in the CUDA version. RBC is unable to 
improve performance of the baseline OpenACC. This is 
explained by the overhead for accessing software-managed 
cache; i.e., assuring the address falls within the range of 
data existing in the shared memory. 

5.2.2.3 Jacobi iterative method 

Figure 5 compares four implementations of Jacobi iterative 
method under different problem sizes. Each thread in Jacobi 
reads nine neighbour elements (3-by-3 tile) and updates the 
value of the centre element. Considering a two-dimensional 
matrix, calculations used by neighbour elements share 
significant amount of input data (four to six elements.) 
Fetching this data into software-managed cache and sharing 
data among threads is one-way to optimise baseline 
OpenACC. We employ this in RBC, RBI, and CUDA 
implementations. Although our analysis shows RBC lowers 
global memory accesses, RBC harms overall performance 
when compared to the baseline. This is explained by the 
overhead (control flow and logical operations) of assuring 
addresses fall within the range of the data fetched into the 

shared memory. RBI removes this overhead and improves 
performance of baseline OpenACC by 3%–6%. Despite 
this, we observe a huge gap between RBI and CUDA. 
CUDA launches thread blocks equal in size to the size of 
the data being used by the thread block. RBI, however, 
launches thread blocks equal in size to the size of the 
computations being performed by the thread block. This 
results in the CUDA version using slightly larger thread 
block size than RBI. Here, threads at the boarder of thread 
block are only used for fetching the data. This reduces 
irregular control flow in the fetch routine. We found that 
this can be effectively implemented in OpenACC to reduce 
the gap between RBI and CUDA. However, we do not 
investigate it further due to the high development effort 
required (close to CUDA equivalent), which is not desirable 
for high-level OpenACC. 

5.2.3 Occupancy 

Table 3 reports CUDA occupancy of different 
implementations of the test cases discussed in Section 5.2.2. 
The table reports occupancy in percentage and, within the 
parentheses, the first number reports registers used per 
thread and the second number report the size of shared 
memory used per thread block. All implementations have 
the same thread block size: 256 under N-Body and 16 by 16 
under GEMM and Jacobi. Occupancy is 100% in most 
cases, meaning that GPU is able to run up to 2,048 threads 
per streaming multiprocessor. There are three cases where 
the occupancy is below 100%. RBC implementation of 
GEMM uses extra registers and that explains why 
occupancy drops below 100%. The size of cache after cache 
sharing is overestimated under RBC and RBI 
implementations of N-Body. This has lowered down the 
occupancy to 75%. 

Figure 3 Comparing performance of four GEMM implementations under different matrix sizes (see online version for colours) 

 
Notes: For each bar group, bars from left to right represent OpenACC without cache directive, OpenACC with cache directive 

implemented using RBC, OpenACC with cache directive implemented using RBI, and CUDA. 
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Figure 4 Comparing performance of four N-Body simulation implementations under different number of bodies (see online version  
for colours) 

 

Figure 5 Comparing performance of four Jacobi iterative method implementations under different matrix sizes (see online version  
for colours) 

 

Figure 6 Comparing speedup from different finding sharing width methods 

 
Note: Numbers are normalised to the baseline OpenACC without using the cache directive. 

Table 3 Comparing occupancy of OpenACC without cache, OpenACC plus cache (RBC and RBI), and CUDA 

 GEMM N-Body Jacobi 

OpenACC-nocache 100% (24, 0) 100% (32, 0) 100% (16, 0) 
OpenACC-cache-RBC 75% (33, 4 KB) 75% (30, 8 KB) 100% (21, 1.2 KB) 
OpenACC-cache-RBI 100% (30, 4 KB) 75% (30, 8 KB) 100% (18, 1.2 KB) 
CUDA 100% (30, 4 KB) 100% (32, 4 KB) 100% (11, 1.2 KB) 
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Figure 7 Comparing speedup from different renewing cache scope methods 

 
Note: Numbers are normalised to the baseline OpenACC without using the cache directive. 

Figure 8 Comparing execution time of kernel under various shared memory configurations (see online version for colours) 

 

 
5.2.4 Implementation alternatives 

In Section 5.2, we reported performance of RBI and RBC 
under kernel arguments method of finding sharing width 
(discussed in Section 4.2.2) and private method of renewing 
cache scope (discussed in Section 4.2.3). In this section, we 
investigate performance of RBI under alternative methods 
for finding sharing width and renewing cache scope (very 
similar discussion applies to RBC as well.) 

 Find SharingWidth: We compare speedup from three 
alternative methods for finding sharing width (kernel 
arguments, synchronisation, and fixed), under three test 
cases introduced earlier (GEMM, N-Body, and Jacobi). 
Fixed method simply sets the sharing width to the 
thread block size. Kernel arguments method uses a 
control-flow statement per dimension and sets the 
sharing width either to the thread block size or a  

pre-calculated number (obtained from kernel 
arguments). Synchronisation method performs one 
reduction per dimension of subarray to find sharing 
width. As reported in Figure 6, fixed method performs 
fastest. Although fixed method is the fastest, it is not 
generally applicable. This is because compiler may not 
be able to statically guarantee that the total number of 
loop iterations is multiple of thread block size. If this is 
the case, kernel arguments method can be used instead 
of fixed method. We found that the performance gap 
between fixed and kernel arguments is 3%–5%. 
Synchronisation method performs slowest under all test 
cases as reported in Figure 6 and performs up to 3% 
slower than kernel arguments. Reductions slow down 
performance of synchronisation significantly for  
multi-dimensional subarrays. This is the case in GEMM 
and Jacobi that use two-dimensional subarrays. In  
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N-Body, however, one-dimensional subarray is being 
used and synchronisation method performs close to 
kernel arguments. 

 Renew cache scope: We compare speedup from two 
alternative methods of renewing cache scope 
(communicating and private), under three test cases 
introduced earlier (GEMM, N-Body, and Jacobi). 
Communicating method shares cache pointers among 
threads of the thread block and calculates the newscope 
collaboratively. Slowdown under communicating 
method is incurred by thread block synchronisations 
and read/writes from shared memory. Private method, 
however, locally calculates the new cache scope 
according to the equations proposed in Section 4.2.3 
and avoids debilitating inter-thread communications. 
As shown in Figure 7, private method outperforms 
communicating method under all test cases, except 
under smallest dataset of N-Body. In this case, the 
number of parallel threads is relatively low and GPU 
cores complete inter-thread communication very fast 
[since synchronisation instructions are infrequently 
hindered by other instructions (Liu et al., 2016)]. This 
makes communicating method faster than private 
method in this case. Overall private method 
outperforms communicating method by up to 47%. 

5.3 Cache write 

We developed two synthetic workloads to investigate 
performance of write-back and write-through policies. The 
first workload’s write pattern is dense and regular. The 
workload is of 1D stencil type where each parallel work 
computes an element in the output array, iteratively. In 
OpenACC terms, all parallel iterations are active (forming 
the dense pattern) and consecutive iterations write 
consecutive words (forming the regular pattern). Every 
parallel work serially iterates for a certain number of 
iterations (which is a run parameter) and computes the value 
of the element iteratively. The second workload is the same 
as the first, except that only a fraction of threads are active 
(less than 2%) and only a fraction of serial iterations 
perform write (less than 2%). This forms the sparse pattern. 

Parameters of these workloads are parallel iterations 
(total number of work) and number of serial iterations 
within the work. The number of serial iterations models the 
frequency of cache writes. Sweeping this number from 4 to 
4,096, we measure the performance of write-back and  
write-through under various cache access frequencies. 

Figure 8 compares write-back and write-through under 
the two synthetic workloads described above (dense regular 
versus sparse). Two problem sizes are reported for each 
workload, 128K and 4K parallel work. We observe a similar 
trend under both workloads. When parallel work is massive 
in size (e.g., 128K work), write-back is faster than  
write-through [Figures 8(b) and 8(d)]. This is due to the fact 
that large amount of threads can perfectly hide the latency 
of write-back’s final write routine. When parallel work is 
small in size and write frequency is low [e.g., left side of 

Figures 8(a) and 8(c)], write-through outperforms  
write-back. For example in Figure 8(a), write-through is 
faster when write frequency is lower than 16. Going beyond 
16, write-back starts to catch up with write-through. This 
can be explained by the higher rate of global memory writes 
that write-through makes. For large write frequencies  
(e.g., > 64), write-through performs numerous redundant 
writes to global memory. Write-back, in contrast, buffers 
intermediate written values (in shared memory) and writes 
them all to global memory once at the end of cache region. 
This reduces the total global memory writes compared to 
write-through and saves performance. As presented, the 
performance gap between write-back and write-through 
increases from 7% to 34%, as write frequency increases. 

Table 4 Performance improvement from RBI over the 
baseline OpenACC (without cache) 

 Tesla K20c Quadro K600 

GEMM 238.0% 255.1% 
N-Body 198.0% 211.4% 
Jacobi 6.4% 2.5% 

5.4 Performance portability 

Performance portability is one of the most important 
motivations of using OpenACC directives. In this paper, we 
focused on devising efficient implementation of the cache 
directive on the most commonly used platform (Norman  
et al., 2015; Bonati et al., 2015; Markidis et al., 2015), 
NVIDIA GPUs. Intuitively, we believe very similar 
optimisation strategies can be followed on other similar 
architectures, e.g., AMD GPUs (AMD Inc., 2012), to devise 
an efficient implementation of the cache directive. 
Discussing optimisation strategies on different platforms is 
beyond the scope of this paper. 

To show the performance portability across NVIDIA 
GPUs, here we evaluate our implementation on a  
different NVIDIA GPU, Quadro K600. In Table 4, we 
report performance improvement from RBI implementation 
over the baseline OpenACC (without cache) under three 
benchmarks: GEMM, N-Body, and Jacobi. We limit the 
evaluations to single dataset per benchmark (largest dataset 
that could fit in the memory of Quadro K600). For RBI 
configuration, we assume private method for renewing 
cache scope (Section 4.2.3) and kernel arguments method 
for finding sharing width (Section 4.2.2). As shown in the 
table, improvements are very close. Improvements are 
slightly larger under Quadro K600 forGEMMand N-Body 
benchmarks. This can be explained by the difference in the 
memory bandwidth of Quadro K600 and Tesla K20c. 
DRAM memory bandwidth of Quadro K600 is 29 GB/s 
which is 7.1 times lower than the bandwidth ofTesla K20c 
(208 GB/s). Accordingly, Quadro K600 is more sensitive to 
the techniques that optimise memory accesses. The cache 
directive is an example of these techniques and returns 
higher performance improvement when the memory 
bandwidth is throttled (e.g., Quadro K600). 
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6 Discussion 

6.1 EHC in CUDA 

In EHC, tag and data arrays should be kept consistent. This 
limits cache sharing and generally parallelism of software-
managed cache operations, specially write operations. For 
instance, if two threads miss different data and want to fetch 
both into the same location, synchronisation is necessary. 
The synchronisation overhead can be significant as the only 
way to handle such scenarios is to create a critical section or 
use atomic operations. Because of this limitation, for 
performance goals, cache sharing optimisations should be 
avoided on top of EHC. We exclude EHC from evaluations 
as we did not find it competitive. 

6.2 Optimising RBC 

In RBC, __cache_read routine is the performance limiting 
factor, listed in Listing 3. Investigating the CUDA assembly 
of the kernel (in sass format), we found that the compiler 
eliminates branches and instead uses predicates. This, on the 
positive side, eliminates extra operations for managing the 
post-dominator stack (Fung et al., 2007). On the negative 
side, all instructions, in both taken and not taken paths of 
the branch, are at least fetched, decoded, and issued (some 
are executed as well). The nvcc compiler uses a heuristic to 
employ predicates or generate control flow statements [we 
describe this in Section 5.4.2 of NVIDIA Corp., (2017c)]. 
For __cache_read routine of RBC, the heuristic finds 
predicate advantageous. However, the overhead of the 
predicate version is still huge and the routine is translated to 
16 machine instructions. This explains why RBC is slow. 
We believe further optimisations on RBC should be 
performed at the machine level. 

6.3 Alternative cache targets 

NVIDIA GPUs have alternative on-chip caches that can be 
used by OpenACC compiler as the target of the cache 
directive (e.g., constant memory and texture cache) or can 
be used effortlessly as an alternative to the cache directive 
(L1 cache and read-only cache). Constant and texture 
memory are limited to read-only data. If the subarray is 
written in the cache region, constant and texture memory 
can not store the latest value nor deliver the latest to 
subsequent requests. In addition, the precision of the 
application could be affected if texture memory is used. We 
evaluated the performance impact of L1 and read-only 
caches separately. We enforced read-only cache using const 
and __restrict__ keywords and forced the GPU to cache 
global accesses through nvcc compile flags (-Xptxas-
dlcm=ca) and found out that performance improvements are 
less than 2%. This suggests that the advantages of using 
software-managed cache is not limited to reading/writing 
data from/to faster cache, but also accessing the data in 
fewer transactions and in a coalescing-friendly way. 

6.4 Explicit mapping 

OpenACC API accepts hints from the programmer to 
explicitly specify the mapping of loop iterations to different 
thread blocks (gang clause) or the same thread block 
(worker and vector clauses). In this case, the compiler 
should generate a specific mapping of parallel loops to 
CUDA thread hierarchies, forced by gang, vector, and 
worker clauses. This can limit the range of compiler 
optimisations in sharing the cache space among threads. 
Generally, as long as the mapping enforced by the clauses is 
a valid configuration and does not have conflict with the 
outcome of the compiler pass we propose in Section 4.2.1, 
the compiler proceeds and exploits the sharing opportunity. 
Invalid configuration is created when the sharing range is 
larger than the CUDA shared memory size. This can be 
enforced by vector and worker clauses that map loop 
iterations to threads of one thread block and change the 
thread block size across x and y dimensions, respectively. 
The conflict mostly occurs when gang clause is used. gang 
clause asks the compiler to map each iteration to a thread 
block. This can have conflict with the compiler pass we 
presented in Section 4.2.1, if the compiler decides to map 
this loop to threads of the thread block. In the case of 
conflict, the compiler can limit the sharing range, e.g., 
sharing only across one dimension of the grid and ignoring 
the sharing along the gang loop, or even ignoring the 
sharing optimisation, in the worst case. 

6.5 Alternative cache implementations 

To the best of our knowledge, currently there are no 
commercial or open source OpenACC compilers that 
support the cache directive. Therefore, we are unable to 
compare performance of our implementation to other 
studies. We studied several compilers (i.e., PGI and Omni) 
but found none of them supporting the cache directive. We 
compiled the kernels with PGI Accelerator compiler 16.1 
and found out that the compiler ignores the cache directive 
and does not generate shared memory CUDA code. We also 
investigated several open source frameworks, e.g., 
RoseACC, accULL, and Omni compiler, of which none had 
an implementation for the cache directive. 

6.6 Cache coherency 

As stated by OpenACC specification (OpenACC, 2013, 
2015), it is possible to write an accelerator parallel/kernels 
region that produces inconsistent numerical results. This is 
because some accelerators (e.g., GPUs) implement weak 
memory model. In weak memory model, memory 
coherency is not supported between operations executed by 
different threads nor between subsequent operations of a 
single thread, unless operations are separated by an explicit 
memory fence. This is the programmer’s task to ensure the 
correctness of the application is not compromised by the 
weak memory model. Similarly, since variables and  
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subarrays listed in the cache directive are part of the 
memory hierarchy, we assume weak memory model for the 
cache directive as well. 

We explain the behaviour of our implementation of the 
cache directive under this weak memory model under two 
major scenarios: 

1 one thread has the copy, the thread writes to the copy, 
and all threads attempt to read 

2 multiple threads have copies, multiple threads write to 
their copy, and all threads attempt to read. 

The behaviour is summarised in Table 5. The behaviour is 
very similar to CUDA behaviour when multiple threads 
attempt to write to the same memory location 
asynchronously. Here, we assume write-back policy for the 
cache implementation. 

The first scenario assumes that one thread has a copy of 
a data in its cache, and no other thread has a copy of this 
data. Write operations to this local copy (by the thread) are 
immediately visible to the thread (marked as #1 in the 
table). As the thread leaves the cache region, the global 
memory will be updated by the latest copy available in the 
cache. While the kernel is running, threads that complete 
their read access before this update read the old value. 
Threads that complete their read access after this update 
read the new value. This behaviour is marked as undefined 
in the table (#2). Once the kernel runs all the threads and 
completes its execution, the global memory has the new 
value rewritten by the thread (#3 in the table). 

The second scenario assumes that multiple threads have 
copies of a data in their cache and one or more threads write 
their local copy. Since our implementation shares the cache 
among a range of threads (thread block), write operations 
from other threads to their local copy is visible to the range 
of threads that share the cache. Accordingly, a thread might 
read the value written by itself or other threads (#4 and #5 
in the table). Our implementation guarantees that one write 
from the threads updates the cache, but the thread that 
updates the cache is unspecified. Similar to the first 
scenario, once a thread leaves the cache region, the global 
memory will be updated by the latest copy that is in the 
cache. Once the kernel completes its execution, the global 

memory has the new value written by a thread, but again the 
thread is unspecified. 

Overall, here the behaviour for the cached and uncached 
data is the same. In either case, if multiple threads write to 
the same memory location, one thread successfully updates 
the global copy, but that thread is unspecified. Accordingly, 
future reads from that location might return undefined 
value. 

7 Related work 

Reyes et al. (2012) developed accULL to execute OpenACC 
applications on accelerators. Two major components of 
accULL are source to source compiler and runtime library. 

The runtime library routines are implemented in both 
CUDA and OpenCL. Tian et al. (2013) presented an 
OpenACC implementation built in OpenUH (Liao et al., 
2007). Using OpenUH, they evaluated the performance of 
several alternatives in mapping loop iterations to GPU 
parallel threads. Lee and Vetter (2014) introduced a 
framework for compiling, debugging, and profiling 
OpenACC applications. They also introduced a new 
directive, openarc, mapping OpenACC arrays to CUDA 
memory spaces. CUDA memory spaces include shared 
memory and texture memory. Hoshino et al. (2014) 
investigated the impact of memory layout on the 
performance of NVIDIA Kepler architecture, Intel XeonPhi, 
and Intel Xeon processors. They limit their study to 
directive-based programming languages. Their study shows 
that having structure-of-arrays is much more efficient than 
array-of-structures for Kepler and XeonPhi, while it has 
minor impact on the performance of Xeon. They explain 
this by the cache size of these processors (Kepler, XeonPhi, 
and Xeon have 110 bytes, 128 Kbytes, and 1048 Kbytes of 
cache per hardware thread, respectively). They also 
introduced a new directive for changing the data layout of 
multi-dimensional arrays. Herdman et al. (2012) compared 
the performance of parallel and kernels constructs under 
various implementations of OpenACC. They found that 
most vendors focus on one of these constructs. Comparing 
the quickest construct of the vendors, their performance 
variations found to be below 13%. 

Table 5 Behaviour of our weak memory model cache directive implementation under two scenarios: one write multiple reads and 
multiple writes multiple reads 

Scenario During the kernel  After the kernel 

Seen by threads that have a copy Seen by other threads Seen by all threads 

Only one thread has a copy 
and the thread writes to the 
copy 

(#1) New value (#2) Undefined: old value or 
new value 

 (#3) The new value 

Multiple threads have 
copies and one or more 
threads write to the copy 

(#4) Undefined: old value or new 
value from any copy 

(#5) Undefined: old value or 
new value from any copy 

 (#6) Undefined: the new value 
from one unspecified thread 
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8 Conclusions 

In this paper, we studied and addressed the challenges 
facing the OpenACC cache directive in NVIDIA GPUs. We 
used CUDA shared memory as the software-managed cache 
space for implementing the directive. We presented three 
different methods and several performance optimisations for 
implementing the cache directive, among which sharing the 
cache space among multiple threads and parallelising cache 
fetch and write routines are the most critical. Our results 
also show that sharing the cache among several parallel 
threads is essential to have a robust performance and  
write-back cache outperforms write-through policy for the 
majority of memory patterns. 

We also presented a CUDA shared memory test to 
understand structural hazards and performance bottlenecks 
of the shared memory. Evaluating under matrix-matrix 
multiplication, N-Body simulation, and Jacobi method 
iteration test cases, we presented an implementation that can 
perform close to hand-written CUDA. 
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