Nonlinear Steklov eigenvalue problem with variable exponents and without Ambrosetti–Rabinowitz condition

Abdellah Zerouali*
Regional Centre of Trades Education and Training, Oujda, Morocco
Email: abdellahzerouali@yahoo.fr
*Corresponding author

Belhadj Karim
University Moulay Ismail, Faculty of Sciences and Technics, Errachidia, Morocco
Email: karembelf@gmail.com

Omar Chakrone
University Mohamed I, Faculty of Sciences, Oujda, Morocco
Email: chakrone@yahoo.fr

Abstract: In this paper, we study a nonlinear Steklov eigenvalue problem involving the $p(x)$-Laplacian on a bounded domain. We introduce a new variational technic that allows us to investigate this problem without need of the Ambrosetti–Rabinowitz condition on the nonlinearity.

Keywords: critical point; $p(x)$-Laplacian; Steklov problem; variable exponent Lebesgue–Sobolev spaces.

Biographical notes: Abdellah Zerouali is a Professor at Regional Center of Trades Education and Training, Oujda, Morocco. He received Doctorate in Applied Mathematics at Faculty of Sciences Oujda. His field of interest is the study of partial differential equations by applying the results of nonlinear analysis.

Belhadj Karim is a Professor at Faculty of Sciences and Technics, Errachidia, Morocco. Her research topic is mainly in partial differential equations.

Omar Chakrone is a Professor at Faculty of Sciences, Oujda, Morocco. Her research topic is mainly in partial differential equations.
1 Introduction and main result

Let Ω be a bounded domain in \mathbb{R}^N ($N \geq 2$) with smooth boundary $\partial \Omega$, ν is the outward unit normal vector on $\partial \Omega$, $p \in C_+ (\Omega) := \{ h \in C (\overline{\Omega}) / \min_{x \in \Omega} h(x) > 1 \}$. Motivated by the work that has studied the Dirichlet case in Benouhiba and Saker (2013), we consider the following Steklov problem

$$\begin{cases}
\Delta_{p(x)} u = (1 - \mu) |u|^{p(x)-2} u & \text{in } \Omega, \\
|\nabla u|^{p(x)-2} \frac{\partial u}{\partial \nu} + \mu |u|^{p(x)-2} u = \lambda f(x, u) & \text{on } \partial \Omega
\end{cases} \quad (1.1)$$

where $\mu \in \{0, 1\}$, $\Delta_{p(x)} u = \text{div}(\nabla |u|^{p(x)-2} u)$ is the $p(x)$-Laplacian and $f : \partial \Omega \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a Carathéodory function fulfilling appropriate conditions. The considered eigenvalue problem involves variable exponent growth conditions. The study of such kind of equations is a very active field of investigation in the last decade since they can serve as models for different physical phenomena. We refer to Růžička (2002) for a model of partial differential equation with non standard growth in electrorheological fluids.

The main idea of this work is to study equation (1.1) in both cases $\mu = 0$ and $\mu = 1$ without assuming the Ambrosetti–Rabinowitz condition (Ambrosetti and Rabinowitz, 1973) on f, namely,

$$(\text{AR}) \; \exists M > 0, \tau > p^+ \text{ such that } 0 < \tau F(x, s) < f(x, s)s, |s| \geq M, x \in \partial \Omega,$$

where f is a nonlinear term such that $F(x, t) := \int_0^t f(x, s)ds$ and $p^+ = \max_{x \in \Omega} p(x)$, since it is a restrictive condition eliminating many nonlinearities.

In Deng (2008), the problem (1.1) has been considered in the case where $\mu = 0$ and $f(x, u) = \lambda |u|^{q(x)}-2 u$. The author showed the existence of infinitely many positive eigenvalue sequences. While in Anane et al. (2014), we have studied the problem (1.1) in the case where $\mu = 0$ and $f(x, u) = \lambda |u|^{q(x)}-2 u$ with $p(x) \neq q(x)$.

The familiar approach to solve problem (1.1) is to search critical points of the functional

$$\Phi_{\lambda,0}(u) = \int_{\Omega} \frac{|\nabla u|^{p(x)}}{p(x)} \, dx + \int_{\Omega} \frac{|u|^{p(x)}}{p(x)} \, dx - \lambda \int_{\partial \Omega} F(x, u) \, d\sigma,$$

in the case $\mu = 0$ and the functional

$$\Phi_{\lambda,1}(u) = \int_{\Omega} \frac{|\nabla u|^{p(x)}}{p(x)} \, dx + \int_{\partial \Omega} \frac{|u|^{p(x)}}{p(x)} \, dx - \lambda \int_{\partial \Omega} F(x, u) \, d\sigma,$$

in the case $\mu = 1$, where $d\sigma$ is the $N - 1$ dimensional Hausdorff measure. In this method, some authors assume that the nonlinearity f satisfies (AR), we cite for example
Karim et al. (2015). Others study the problem (1.1) without this condition in the superlinear case and with \(\mu = 0 \), we refer to Ayoujil (2014) and Zang (2008).

The author in Rother (1993) discovered a new functional whose critical point is a solution of the following equation

\[\Delta_p = \lambda f(x,u), \quad \text{in } \Omega \]

(1.2)

in the special case \(p = \text{constant} \) with Dirichlet boundary conditions. This case has been generalised in Benouhiba and Saker (2013), the authors use a more general functional and they get the existence of infinitely many solutions of problem (1.2) without assuming the (AR) condition.

Throughout this paper, we denote by \(h^+ := \max_{x \in \Omega} h(x), \ h^- := \min_{x \in \Omega} h(x) \) for any \(h \in C_+ (\Omega) \) and

\[p^*_0(x) = \begin{cases} \frac{(N - 1)\mu(x)}{N - p(x)}, & \text{if } p(x) < N \\ \infty, & \text{if } p(x) \geq N \end{cases} \]

We enumerate now the hypotheses concerning the functions \(f \) and the variable exponents:

A1: \(p, q \in C_+ (\bar{\Omega}) \) and \(p(x) < q(x) < p^*_0(x) < +\infty \), for all \(x \in \bar{\Omega} \);

A2: there exists an open non empty \(\omega \subset \partial \Omega \), and \(0 \leq \tau_1 \leq \tau_2 + \omega < +\infty \) such that

\[f(x,t) > 0 \text{ on } \omega \times]\tau_1, \tau_2[; \]

A3: there exists \(g(x) \in L^{s(x)} (\partial \Omega) \) such that

\[f(x,t) \leq g(x)t^{q(x) - 1} \quad \text{for a.e. } x \in \partial \Omega \text{ and for all } t \in \mathbb{R}^+; \]

where the variable exponent \(s \in C_+ (\bar{\Omega}) \) and satisfies \(\frac{p^*_0(x)}{p^*_0(x) - q(x)} < s(x) \) for all \(x \in \bar{\Omega} \).

Example 1: we give an example of the functions \(p, q, f \) and \(g \), which satisfy the conditions (A1)–(A3), in the case where \(N = 2 \) and \(\Omega = [0,1] \times [0,1] \). For \(x = (x_1, x_2) \in \Omega \), we define \(p(x) = \frac{1}{10}(x_1 + x_2 + 11) \), thus \(p_0^*(x) = \frac{x_1 + x_2 + 11}{9 - (x_1 + x_2)} \).

We take \(q(x) = \frac{1}{4}(p(x) + p_0^*(x)), \ s(x) = \frac{p^*_0(x)}{p_0^*(x) - q(x)} + 1, \ g(x) = |x|^{1/s(x)} \) and \(f(x,t) = |x|^{1/s(x)} t^{q(x) - 1} \), where \(|.|\) is the usual norm of \(\mathbb{R}^2 \).

The following theorem is the main result in this work.

Theorem 1.1: Suppose that the assumptions (A1), (A2) and (A3) are fulfilled. Then the problem (1.1) has infinitely many positive eigenvalues.

This article is organised as follows. Section 1 contains an introduction and the main result. In Section 2, which has a preliminary character, we recall some important definitions and results of variable exponent Lebesgue and Sobolev spaces. The proof of our main theorem is given in Section 3.
2 Preliminaries

We recall in what follows some basic facts about the variable exponent Lebesgue and Sobolev spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$.

For $p \in C_{+}(\bar{\Omega})$, we introduce the variable exponent Lebesgue space

$$L^{p(x)}(\Omega) := \left\{ u; u : \Omega \to \mathbb{R} \text{ measurable and } \int_{\Omega} |u|^{p(x)} \, dx < +\infty \right\},$$

endowed with the Luxemburg norm

$$|u|_{p(x)} := \inf \left\{ \alpha > 0; \int_{\Omega} \left| \frac{u(x)}{\alpha} \right|^{p(x)} \, dx \leq 1 \right\},$$

which is separable and reflexive Banach space (Kovácik and Rákosnik, 1991). Denote by

$$|u|_{p(x), \partial\Omega} := \inf \left\{ \alpha > 0; \int_{\partial\Omega} \left| \frac{u(x)}{\alpha} \right|^{p(x)} \, dx \leq 1 \right\},$$

the norm of $L^{p(x)}(\partial\Omega)$. Let us define the space

$$W^{1,p(x)}(\Omega) := \{ u \in L^{p(x)}(\Omega); |\nabla u| \in L^{p(x)}(\Omega) \},$$

equipped with the norm

$$\|u\| = \inf \left\{ \alpha > 0; \int_{\Omega} \left[\left| \frac{\nabla u(x)}{\alpha} \right|^{p(x)} + \left| \frac{u(x)}{\alpha} \right|^{p(x)} \right] \, dx \leq 1 \right\}: \forall u \in W^{1,p(x)}(\Omega),$$

which is equivalent to the norm (Deng, 2009).

$$\|u\|_{1} = \inf \left\{ \alpha > 0; \int_{\Omega} \left| \frac{\nabla u(x)}{\alpha} \right|^{p(x)} \, dx + \int_{\partial\Omega} \left| \frac{u(x)}{\alpha} \right|^{p(x)} \, d\sigma \leq 1 \right\}: \forall u \in W^{1,p(x)}(\Omega).$$

Proposition 2.1. (Deng, 2008; Fan, 1996): If $q \in C_{+}(\bar{\Omega})$ and $q(x) < p^*_0(x)$ for any $x \in \bar{\Omega}$, then the embedding $W^{1,p(x)}(\Omega)$ to $L^{q(x)}(\partial\Omega)$ is compact and continuous.

Proposition 2.2. (Fan and Zhang, 2003; Fan and Zhao, 1998; Kovácik and Rákosnik, 1991): Hölder inequality holds, namely,

$$\int_{\Omega} |uv| \, dx \leq 2|u|_{p(x)}|v|_{p'(x)}, \forall u \in L^{p(x)}(\Omega), \forall v \in L^{p'(x)}(\Omega),$$

where $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$.

An important role in manipulating the generalised Lebesgue–Sobolev spaces is played by the mapping ρ and ϱ defined by

$$
\rho(u) := \int_{\Omega} \left[|\nabla u|^{p(x)} + |u|^{p(x)} \right] \, dx, \quad \forall u \in W^{1,p(x)}(\Omega).
$$

and

$$
\varrho(u) := \int_{\Omega} |\nabla u|^{p(x)} \, dx + \int_{\partial \Omega} |u|^{p(x)} \, d\sigma, \quad \forall u \in W^{1,p(x)}(\Omega).
$$

Proposition 2.3. (Fan and Han, 2003): For $u, u_k \in W^{1,p(x)}(\Omega); k = 1, 2, \ldots$, we have

1. $\|u\| \geq 1$ implies $\|u\| \leq \rho(u) \leq \|u\|$
2. $\|u\| \leq 1$ implies $\|u\| \geq \rho(u) \geq \|u\|$
3. $\|u_k\| \to 0$ if and only if $\rho(u_k) \to 0$
4. $\|u_k\| \to \infty$ if and only if $\rho(u_k) \to \infty$

Proposition 2.4. (Deng, 2009): For $u, u_k \in W^{1,p(x)}(\Omega); k = 1, 2, \ldots$, we have

1. $\|u\|_1 \geq 1$ implies $\|u\|_1 \leq \varrho(u) \leq \|u\|_1$
2. $\|u\|_1 \leq 1$ implies $\|u\|_1 \geq \varrho(u) \geq \|u\|_1$
3. $\|u_k\|_1 \to 0$ if and only if $\varrho(u_k) \to 0$
4. $\|u_k\|_1 \to \infty$ if and only if $\varrho(u_k) \to \infty$

Remark 2.5: Proposition 2.3 will be used in the proof of the main result in the case $\mu = 0$ while Proposition 2.4 will be devoted to the case $\mu = 1$.

3 Proof of main results

Consider at first the case $\mu = 0$. In this case the problem (1.1) becomes

$$
\begin{cases}
\Delta_{p(x)} u = |u|^{p(x)-2} u & \text{in } \Omega, \\
|\nabla u|^{p(x)-2} \frac{\partial u}{\partial n} = \lambda f(x,u) & \text{on } \partial \Omega
\end{cases}
$$

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (3.1) if there exists $u \in (W^{1,p(x)}(\Omega)) \setminus \{0\}$ such that

$$
\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx + \int_{\Omega} |u|^{p(x)-2} u v \, dx = \lambda \int_{\partial \Omega} f(x,u) v \, d\sigma,
$$

for any $v \in W^{1,p(x)}(\Omega)$. The eigenfunction u is called weak solution of problem (3.1).
We denote by E the set of nondecreasing $C^1(\mathbb{R}^+, \mathbb{R}^+)$ functions Φ that satisfy: there exists $c > 0$ such that

$$
\Phi(r) > cr^{s-} \quad \text{if } 0 < r < 1,
$$

$$
\Phi(r) > cr^{s+} \quad \text{if } r \geq 1.
$$

(3.3)

It is clear that $E \neq \emptyset$ since we can take $\Phi(r) = c[1 + (r + 1)^{s-} + (r + 1)^{s+}]$ for all $r \in \mathbb{R}^+$.

Example 2: In the case of Example 1, a simple framework shown that $p^- = \frac{13}{10}$, $p^+ = \frac{13}{7}$, $s^- = \frac{21}{3}$ and $s^+ = 21$. In this case, we can take $\Phi(r) = c(r + 1)^{\frac{21}{3}}[1 + (r + 1)^{21}]$.

We define on E an equivalence relation \sim by

$$
\forall \Phi_1, \Phi_2 \in E : \Phi_1 \sim \Phi_2 \iff \exists c > 0 : \Phi_1(r) = c\Phi_2(r), \forall r > 0.
$$

We denote by \tilde{E} the elements of E/\sim. For any $\Phi \in \tilde{E}$, we define the functional J_Φ by

$$
J_\Phi : (W^{1,p(x)}(\Omega)) \setminus \{0\} \rightarrow \mathbb{R}^+
$$

$$
J_\Phi(u) = \frac{\int_{\partial \Omega} F(x,u)d\sigma}{\Phi(I(u))},
$$

where

$$
I(u) = \int_{\Omega} \frac{|\nabla u|^{p(x)}}{p(x)}dx + \int_{\Omega} \frac{|u|^{p(x)}}{p(x)}dx \quad \text{and} \quad F(x,s) = \int_0^s f(x,t)dt.
$$

Lemma 3.1: Assume that (A1) and (A3) hold. For all $\Phi \in \tilde{E}$, J_Φ is well defined and bounded from above in $(W^{1,p(x)}(\Omega)) \setminus \{0\}$.

Proof: For all $u \in (W^{1,p(x)}(\Omega)) \setminus \{0\}$, $I(u) \neq 0$. Thus by definition of Φ, we have $\Phi(I(u)) \neq 0$. On the other hand, under (A3), the integral $\int_{\partial \Omega} F(x,u)d\sigma$ is well defined. Indeed, applying the Hölder inequality we get for any $u \in W^{1,p(x)}(\Omega)$

$$
\int_{\partial \Omega} F(x,u)d\sigma \leq \frac{2}{q^+} |g|_{s(x),\partial \Omega} |u|^{q(x)}|\nu(x),\partial \Omega|
$$

$$
= \frac{2}{q^-} |g|_{s(x),\partial \Omega} |u|^{q(x)}|\nu(x'),\partial \Omega|
$$

Thus

$$
\int_{\partial \Omega} F(x,u)d\sigma \leq \begin{cases}
\frac{2}{q^+} |g|_{s(x),\partial \Omega} |u|^{q(x)}|\nu(x),\partial \Omega| & \text{if } |u|^{q(x)}|\nu(x),\partial \Omega| > 1 \\
\frac{2}{q^-} |g|_{s(x),\partial \Omega} |u|^{q(x)}|\nu(x'),\partial \Omega| & \text{if } |u|^{q(x)}|\nu(x'),\partial \Omega| \leq 1
\end{cases}
$$
As \(\frac{p(x)}{p'(x) - q(x)} < s(x) \) for all \(x \in \Omega \), we have \(q(x) s'(x) < p(x) \). It follows, from Proposition 2.1, that there exists \(c > 0 \) such that for all \(u \in W^{1, p(x)}(\Omega) \)

\[
\int_{\partial \Omega} F(x, u) d\sigma \leq \begin{cases} \frac{2c}{q} |g|_{s(x), \partial \Omega} \| u \|^{s^+} & \text{if } |u|_{q(x) s'(x), \partial \Omega} > 1 \\ \frac{2c}{q} |g|_{s(x), \partial \Omega} \| u \|^{s^-} & \text{if } |u|_{q(x) s'(x), \partial \Omega} \leq 1 \end{cases}
\]

Hence there exists \(C > 0 \) such that for all \(u \in W^{1, p(x)}(\Omega) \)

\[
\int_{\partial \Omega} F(x, u) d\sigma \leq C (\| u \|^{s^+} + \| u \|^{s^-}). \tag{3.4}
\]

Finally, the functional \(J_\Phi \) is well defined. It remains to show the boundedness of \(J_\Phi \) to complete the proof. We distinguish two cases: if \(\| u \| < 1 \), then \(I(u) \leq \frac{1}{p} \rho(u) \leq \rho(u) < 1 \). It follows, from (3.3) and (3.4), that

\[
0 \leq J_\Phi \leq C \frac{\| u \|^{s^+} + \| u \|^{s^-}}{\Phi(I(u))}
\]

\[
\leq C \frac{\| u \|^{s^+} + \| u \|^{s^-}}{\frac{2}{5} (I(u))^{\frac{5}{2}}} + \frac{2}{5} (I(u))^{\frac{5}{2}}
\]

\[
\leq C (I(u))^{\frac{5}{2}} + \left(I(u) \right)^{\frac{5}{2}}
\]

\[
\leq C''
\]

since, by Proposition 2.3, we have \(\| u \|^{s^+} \leq \left(\rho(u) \right)^{\frac{s^+}{s^t}} \leq \left(p^+ \right)^{\frac{s^+}{s^t}} (I(u))^{\frac{s^+}{s^t}} = c(I(u))^{\frac{s^+}{s^t}} \).

We use the same argument for the case \(\| u \| \geq 1 \) to get the boundedness of \(J_\Phi \). \(\square \)

Proposition 3.2: Assume the hypotheses of Theorem 1.1 hold, then for all \(\Phi \in \hat{E} \), there exists \(u_\Phi \in (W^{1, p(x)}(\Omega)) \) \(\setminus \{0\} \) such that

\[
J_\Phi(u_\Phi) = \max_{u \in (W^{1, p(x)}(\Omega)) \setminus \{0\}} J_\Phi(u).
\]

Proof: By Lemma 3.1, the maximum in Proposition 3.2 is a well defined positive real number. Let \(\varphi \in C_0^\infty(\Omega) \) such that \(\text{supp} \varphi \subset \omega \) and \(\sup_{x \in \partial \Omega} \varphi(x) > \tau_1 \), where \(\tau_1 \) is the constant from assumption (A2). It is clear that under assumption (A2), we have

\[
F(x, t) > 0 \quad \text{holds on } \omega \times [\tau_1, +\infty[. \tag{3.5}
\]

According to (3.5), we see that \(F(x, \varphi(x)) > 0 \) for all \(x \in \omega \). Thus \(J_\Phi(\varphi) > 0 \).

Let \((u_n) \subset (W^{1, p(x)}(\Omega)) \setminus \{0\} \) be an maximising sequence. We may assume that

\[
J_\Phi(\varphi) \leq J_\Phi(u_n) \leq \max_{u \in (W^{1, p(x)}(\Omega)) \setminus \{0\}} J_\Phi(u).
\]
Suppose, by contradiction, that \((u_n)\) is not bounded in \(W^{1,p(x)}(\Omega)\). So we can assume that
\[\|u_n\| \geq 1. \]

\[J_\Phi(\varphi) \leq J_\Phi(u_n) \Leftrightarrow J_\Phi(\varphi)\Phi(I(u_n)) \leq \int_{\partial \Omega} F(x, u_n)d\sigma. \]

As \(\Phi(I(u_n)) \geq c(I(u_n)) \frac{s^+}{p^+} \geq c\|u_n\|^{s^+} \) and \(\int_{\partial \Omega} F(x, u_n)d\sigma \leq c'\|u_n\|^{q^+}\), we obtain

\[J_\Phi(\varphi)\|u_n\|^{s^+} \leq c''\|u_n\|^{q^+}. \]

Since the constant \(s^+\) is greater than \(q^+\), it follows that \((u_n)\) is bounded. So we can find a subsequence still denoted by \((u_n)\) that converges weakly to some \(u_\Phi \in W^{1,p(x)}(\Omega)\).

By the Sobolev trace embedding (see Proposition 2.1), \((u_n)\) converges strongly in \(L^{s'(x)q'(x)}(\partial \Omega)\). It is known that under assumption \((A3)\), the Nemytskii operator \(F(x, \cdot)\) is continuous from \(L^{s'(x)q'(x)}(\partial \Omega)\) into \(L^{s'(x)}(\partial \Omega)\). Thus \(F(x, u_n)\) is strongly convergent in \(L^{s'(x)}(\partial \Omega)\). It follows that

\[\int_{\partial \Omega} F(x, u_n)d\sigma \rightarrow \int_{\partial \Omega} F(x, u_\Phi)d\sigma. \]

Since \(\Phi\) is a nondecreasing continuous function and \(I\) is weakly lower semi-continuous, we get

\[\Phi(I(u_\Phi)) \leq \lim \inf \Phi(I(u_n)). \]

Consequently, we have

\[
\max_{u \in (W^{1,p(x)}(\Omega))\setminus\{0\}} J_\Phi(u) \geq J_\Phi(u_\Phi) \\
\geq \lim \sup_{u \in (W^{1,p(x)}(\Omega))\setminus\{0\}} J_\Phi(u) \\
= \max_{u \in (W^{1,p(x)}(\Omega))\setminus\{0\}} J_\Phi(u).
\]

Finally, we conclude that \(J_\Phi\) achieves its maximum at \(u_\Phi\). We affirm that \(u_\Phi \neq 0\), indeed:
as \(J_\Phi(u_\Phi) > 0\), we deduce that \(\int_{\partial \Omega} F(x, u_\Phi)d\sigma > 0\) and then \(u_\Phi \neq 0\) since \(F(x, 0) = 0\).

\(\square\)

Proof of Theorem 1.1: Standard arguments show that for all \(\Phi \in \hat{E}\), the functional \(J_\Phi \in C^1(W^{1,p(x)}(\Omega), \mathbb{R})\). Furthermore, it yields that

\[\langle J'_\Phi(u_\Phi), v \rangle = 0 \quad \text{for all } v \in W^{1,p(x)}(\Omega), \]

since by Proposition 2.1 the functional \(J_\Phi\) achieves its maximum at \(u_\Phi\). By simple calculation, we get, for all \(v \in W^{1,p(x)}(\Omega)\)

\[\Phi'(I(u_\Phi))(I'(u_\Phi), v) \int_{\partial \Omega} F(x, u_\Phi)d\sigma = \Phi(I(u_\Phi)) \int_{\partial \Omega} f(x, u_\Phi)v d\sigma, \]
where

\[
\langle I'(u_\Phi), v \rangle = \int_\Omega |\nabla u_\Phi|^{p(x)-2} \nabla u_\Phi \nabla vdx + \int_{\partial \Omega} |u_\Phi|^{p(x)-2} u_\Phi v d\sigma.
\]

Thus

\[
\langle I'(u_\Phi), v \rangle = \Phi(I(u_\Phi)) \frac{\Phi'(I(u_\Phi))}{\Phi'(I(u_\Phi))} \int_{\partial \Omega} F(x, u_\Phi) d\sigma \int_{\partial \Omega} f(x, u_\Phi) v d\sigma.
\]

This is equivalent to

\[
\int_\Omega |\nabla u_\Phi|^{p(x)-2} \nabla u_\Phi \nabla vdx + \int_{\partial \Omega} |u_\Phi|^{p(x)-2} u_\Phi v d\sigma = \lambda \int_{\partial \Omega} F(x, u_\Phi) d\sigma.
\]

where

\[
\lambda_\Phi = \frac{\Phi(I(u_\Phi))}{\Phi'(I(u_\Phi))} \int_{\partial \Omega} F(x, u_\Phi) d\sigma.
\]

Since \(\Phi(I(u_\Phi)) > 0, \int_{\partial \Omega} F(x, u_\Phi) d\sigma > 0 \) and \(\Phi'(I(u_\Phi)) > 0 \), then \(\lambda_\Phi \) is well defined and \(\lambda_\Phi > 0 \). Thus \(u_\Phi \) is a weak solution of problem (3.1) and since \(u_\Phi \neq 0 \), \(\lambda_\Phi \) is a positive eigenvalue of problem (3.1).

We affirm that the application \(\Phi \rightarrow \lambda_\Phi \) is well defined. Indeed, let \(\Phi_1 = \Phi_2 \) then there exists \(c > 0 \) such that \(\phi_1(r) = c\phi_2(r) \), for all \(r \geq 0 \) where \(\phi_1 \in \Phi_1 \) and \(\phi_2 \in \Phi_2 \). So we have \(J_{\phi_1} = cJ_{\phi_2} \) and consequently \(J_{\phi_1} = cJ_{\phi_2} \). This signifies that \(J_{\phi_1} \) and \(J_{\phi_2} \) have the same critical points. So we conclude that \(\lambda_{\phi_1} = \lambda_{\phi_2} \). As \(\Phi \) is taken arbitrary in \(\hat{E} \), it yields that problem (3.1) has infinitely many positive eigenvalues. \(\square \)

Remark 3.3: As in the Dirichlet case, the invertibility of the application \(\Phi \rightarrow \lambda_\Phi \) is still an open problem. We do not know if all the solutions of Problem (1.1) can be considered as critical points of the functional \(J_\Phi \).

Remark 3.4: For the case \(\mu = 1 \), we follow the same approach to solve the following problem

\[
\begin{cases}
\Delta_{p(x)} u = 0 & \text{in } \Omega, \\
|\nabla u|^{p(x)-2} \frac{\partial u}{\partial \nu} + |u|^{p(x)-2} u = \lambda f(x, u) & \text{on } \partial \Omega
\end{cases}
\]

(3.6)

In this case, we take

\[
J_\Phi(u) = \frac{\int_{\partial \Omega} F(x, u) d\sigma}{\Phi(I_1(u))},
\]

where

\[
I_1(u) = \int_\Omega |\nabla u|^{p(x)} dx + \int_{\partial \Omega} |u|^{p(x)} dx.
\]

The importance of studying the problem (3.6) comes from the importance of the \(p(x) \)-harmonic functions in the applications.
References

