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Abstract: In real-world applications, the index of wind speed is concerned to many fields. This 
index plays an extremely important role in wind power systems. Unfortunately, it is hard enough 
to accurately measure the wind speed. Its forecasting undoubtedly becomes harder and more 
challenging. This paper focuses on the problem of short-term wind speed forecasting. It is too 
complex to model the wind speed by mathematical formulas. The technique of neural networks is 
a learning-based approach. By this technique, the method of spiking neural networks is one of the 
most successful methods to fulfil the modelling of complex dynamics and the exploitation of 
learning ability. This paper investigates a spiking-neural-network-based structure, designs a 
hybrid learning algorithm that combines the adaptive learning rate and the momentum term and 
implements them for the short-term wind speed forecasting. Experiments and comparisons are 
illustrated to show the effectiveness and feasibility of this learning-based forecasting approach. 
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1 Introduction 
On the surface of the Earth, wind is made up of the bulk 
movement of air. Such movement contains the kinetic 
energy called wind energy. Since power is energy per unit 
time, wind power in an open air stream is proportional to 
the third power of the wind speed, that is, the double wind 
speed will lead to the eightfold increase of the wind power 
(Zhu and Zhang, 2019). This fact indicates that the index of 
wind speed becomes a pivotal role in the field of wind 
generation. Wind energy is sustainable and renewable, and 
has a much smaller impact on the environment compared to 
burning fossil fuels. With the development of the wind 
energy technologies, such an index has been paid more and 
more attention in both the academic and engineering 
communities (Li et al., 2017). 

However, wind speed is not only a physical quantity, but 
also it is atmospheric. Inherently, wind is caused by air 
moving from high to low pressure on account of the 
changes in temperature and its direction is usually parallel 
to isobars due to the Earth’s rotation (Alharthi et al., 2018). 
Wind speed is affected by a number of factors and 
situations, including but not limited to pressure gradient, 
local weather conditions and terrain conditions (Zheng  
et al., 2018). Concerning wind generation, it has a direct 
function of wind speed that is not easily dispatchable on 
demand. Consequently, the problem of the wind speed 
forecasting rises up (Astolfi et al., 2018). This problem is 
interesting and challenging because wind is fluctuant, 
intermittent and stochastic. 

Dependent on different time scales, wind speed 
forecasting can be roughly categorised into the short-term 
forecasting, the medium-term forecasting and the long-term 
forecasting (Xu et al., 2018). The medium-term and  
long-term scales usually refer to forecasting of the monthly 
or annual available wind energy resource and they are often 
employed to power-system management, wind farms 
planning and energy trading. Mostly, some typical and 
conventional operations of wind generation include  
wind-turbine active control, dispatch planning and 
maintenance scheduling and regulation and so on (Qian  
et al., 2013). Their temporal resolutions of wind speed 
forecasting ranges between several minutes and several 

hours. Such type of wind speed forecasting calls for the 
short-term forecasting (Al-Falahi et al., 2017). 

Since the short-term forecasting of wind speed is 
concerned to the economy efficiency and reliability of wind 
generation very much, this forecasting problem has been 
paid more and more attention. Due to the complexity of 
wind speed, it is rather hard to forecast it by the first 
principle methods. From the aspect of statistics, some 
forecasting methods have been reported in recent years. 
Erdem and Shi (2011) developed an autoregressive moving 
average (ARMA) model, which contained the wind  
speed and direction information. Another autoregressive 
integrated moving average (ARIMA) model (Aasim and 
Singh, 2019) was investigated by Aasim and Singh. Hu and 
Wang (2015) applied the Gaussian process regression to 
forecast the short-term wind speed. According to the 
multivariate probabilistic method and multiple linear 
regressions, Casella (2019) investigated the forecasting 
problem of short-term wind speed. The statistical 
forecasting methods are based on historical values of wind 
speed, as well as historical and forecast values of 
meteorological variables (Qian et al., 2015). Unfortunately, 
there will always be some inherent and irreducible 
uncertainties in every prediction so that the forecasting 
accuracy of wind speed can hardly be refined (Qian et al., 
2016). 

On the other hand, with the advent and emerging of 
artificial intelligence, some intelligent forecasting models of 
wind speed have recently been addressed, where neural 
networks and support vector machines are two main tools to 
deal with the forecasting problem of wind speed (Marugan 
et al., 2018). Ma et al. (2019) utilised a negative correlation 
learning neural network-based hybrid model to describe and 
forecast wind speed features. Ding et al. (2019) proposed 
the bidirectional gated recurrent unit neural networks-based 
error correction model to correct error of numerical weather 
prediction and applied the neural networks to forecast  
short-term wind power. The support vector machine-based 
model used is employed to calculate the regression 
relationships between the historical data and forecasting 
data of wind speed (Wang et al., 2018). A hybrid wind 
speed forecasting model was developed by Wu and Lin 
(2019) where the least squares support vector machine was 
established to forecast the wind speed series and the 
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machine parameters were optimised by a bat algorithm. 
Some other reports about this filed can also be found in 
(Wang et al., 2016; Liu et al., 2014; Huang and Kuo, 2018; 
Yu et al., 2018). 

This paper focuses on the neural-network-based 
forecasting of wind speed. The structures, algorithms and 
connections of neural networks are various. They are deeply 
dependent on the biological background of neural works. 
Among the diversity of neural networks, spiking neural 
networks (SNNs) are advocated because the kind of 
networks is more closely mimic natural neural networks, 
that is, the structure of SNNs is designed to describe 
realistic brain-like information processing (Bohte et al., 
2002; Shrestha and Song, 2017; Saunders et al., 2019). The 
SNNs-based modelling becomes popular and well-reputed. 
The SNNs not only can have the ability of capturing 
informational dynamics observed among real biological 
neurons, but also they can represent and integrate several 
information dimensions into a single model. So far, it is 
reported that the SNNs-based modelling has been 
successfully applied to electrical load forecasting (Kulkarni 
et al., 2013), carbon price forecasting (Sun et al., 2016) and 
air pollution prediction (Maciag et al., 2019). The 
applications indicate that the SNNs could be a potential 
solution for the forecasting problem of short-term wind 
speed. To some extent, the coming of SNNs in this field is 
also propelled and steered by the need of forecasting the 
short-term wind speed. 

In order to explore the SNNs for the forecasting  
problem of short-term win speed, this paper proposes a 
learning-based approach. According to the spiking-neural-
network-based structure, the proposed approach combines 
the adaptive learning rate and the momentum term. Such 
combination can contribute to refine the forecasting 
accuracy and expedite the learning speed. Compared  
to some traditional neural networks such as the  
back-propagation (BP) neural networks and the radial-basis-
function (RBF) neural networks, the numerical results 
demonstrate the effectiveness and feasibility of the proposed 
learning-based approach. 

The remainder is presented as follows. Section 2 
presents the spiking-neural-network-based structure and 
designs the hybrid learning algorithm. Section 3 introduces 
the data and data-preparation. In Section 4, the proposed 
approach is carried out and some numerical results and 
comparisons are illustrated. Finally, conclusions are drawn 
in Section 5. The highlights of this paper are listed as 
follows: 

• a spiking-neural-network-based forecasting structure is 
addressed 

• the hybrid learning algorithm is designed, which 
combines the adaptive learning rate and the momentum 
term 

• numerical experiments and comparisons are 
demonstrated to support the learning-based approach. 

2 Design of SNNs 
2.1 Spiking neurons 
As other neural networks, the SNNs consist of spiking 
neurons and weights, where the neurons are connected with 
each other by the weighted connections. Different from 
other types of neurons, a spiking neuron does not fire at 
each propagation cycle, but it fire only when a membrane 
potential – an intrinsic quality of the neuron related to its 
membrane electrical charge – reaches a threshold. Once the 
neuron fires, it generates a signal that travels to other 
neurons that, in turn, increase or decrease their potentials in 
accordance with this signal. 

The spiking neuron model (Bohte et al., 2002) is  
just a mathematical description of the biological properties 
of the spiking neuron. Some relevant models of spiking 
neurons include Hodgkin-Huxley (HH) model, leaky 
integrate-and-fire (LIF) model and Izhikevich model, where 
the LIF model becomes popular for its computational 
effectiveness. A generalisation of the LIF model is called 
spike response model (SRM). In the SRM, a neuron each 
time receives an input from a previous neuron, its internal 
state (membrane potential) changes. When the voltage 
passes its threshold, its action potentials are generated. Note 
that the threshold is not fixed but it depends on the time 
since the last spike. A simplified version of the SRM is 
named SRM0. Such a simplified mode includes an 
independence of the response kernel upon the time since the 
last spike. 

The variant SRM0 is easier to fit to experimental data 
than the full SRM, since it needs less data. Therefore, this 
paper adopts the SRM0 as the spiking neurons. Considering 
such a neuron Nj, it receives input spikes from a series of 
presynaptic neurons in the set Γj. Here Γj is an index set, 
which contains each firing at times ti : i ∈ Γj. Nj will fire at 
time t = tj whenever its membrane potential uj(t) reach a 
threshold θ, that is, 

( ) ( )( ) ( ) ( ): 0= = ∧ >f f f
j j jt t u t θ u t  (1) 

In equation (1), ˄ indicates a logical AND operator. Each 
input spike from a presynaptic neuron induces a post 
synaptic potential via multiple synaptic contacts. The 
magnitude of the post synaptic potential due to the kth 
synaptic connection depends on synaptic weight ( )k

jiω  and 

synaptic delay of the related synapse ( ) .k
jid  The total of 

different post synaptic potentials is the membrane potential 
of Nj, formulated by 

( )( ) ( ) ( ) ( )

Γ Γ

( ) ( )
∈ ∈

= − − = i

j j

k k k k
j ji ji ji ji

i k i k

u t ω ε t t d ω y t  (2) 

In equation (2), ( ) ( )( ) ( ).k k
ji jiy t ε t t d= − −i  The function ε(·) is 

a spike response kernel that the delegates normalised post 
synaptic potential. In this paper, we choose the spike 
response kernel as 
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( ) exp 1 ( )
s s

s sε s H s
τ τ

 = − ⋅ 
 

 (3) 

Here τs is a synaptic time constant and H(s) is a Heaviside 
step function, also named unit step function, defined by 

1 0

( ) 0 0

0 0

s

H s σds s

s

+

− +

−

>
= ≤ ≤


<

  (4) 

Here σ means delta function. 

2.2 Network structure 
Shown in Figure 1, the left part is the network structure and 
the right part is the spiking neuron. From Figure 1, the 
topological structure of the SNNs is with a three-layer fully 
connected feed-forward topology. The structure of this 
networks looks like the BP neural networks. But they are 
different. 

Illustrated in Figure 1, I, H and O indicate the set of  
input-layer, hidden-layer and output-layer neurons, 
respectively. ( ) ( ) ( ): , : :I H O

oi hN i I N h H N o O∈ ∈ ∈  denotes 
the neurons located at the input, hidden and output layers, 
respectively. |I|, |H| and |O| describe the number of the 
neurons located at the input, hidden and output layers, 
respectively. In brevity, ( ) ( ),I H

i hN N  and ( )O
oN  are 

abbreviated by Ni, Nh and No to describe the neurons in the 
input, hidden and output layers. Accordingly, the firing time 
in the layers are depicted by ti, th and to. |K| means the delay 
number of synaptic connections. 

The firing time vectors of the input, hidden and output 
layers have the forms of 

[ ]
[ ]
[ ]

| |
1 2 | |

| |
1 2 | |

| |
1 2 | |

T I
I i I

T H
H h H

T O
O o O

t t t t

t t t t

t t t t

= ∈

= ∈

= ∈

 

 

 

t

t

t

R

R

R

 (4) 

The weight matrix between the output and hidden layers is 
written by 

| | | || |O H K
OH

×∈W R  (5) 

where the element of this matrix is written by 
( )

, ( 1)| |( ) .k
o h k Hohω + −  And the weight matrix between the hidden 

and input layers has the form of 
| | | || |H I K

HI
×∈W R  (6) 

where the element of this matrix is described by 
( )

, ( 1)| |( ) .k
h i k Ihiω + −  

Further, the spike response matrix between the hidden and 
output layers can be obtained as 

| | | || |O H K
OH

×∈Y R  (7) 

where the element of the matrix is gotten by 
( )

, ( 1)| |( ( )) .k
o o h k Hohy t + −  And the spike response matrix between 

the hidden and input layers has the form of 
| | | || |H I K

HI
×∈Y R  (8) 

where the element of the matrix is depicted by 
( )

, ( 1)| |( ( )) .k
h h i k Ihiy t + −  

Then, the membrane potential vectors of the hidden and 
output layers have the forms of 

( )( ) | |diag T H
H HI HI I= ∈u W Y t R  (9) 

and 

( )( ) | |diag T O
O OH OH H= ∈u W Y t R  (10) 

A nonlinear function (11) is defined in order to map the 
membrane potential of the neuron Nj into the firing time tj, 
that is, 

( )j jf u t=  (11) 

Accordingly, there exists a vector function 

( ) ( ) ( ) ( )1 2( ) , , , T n
j nf u f u f u f u f u = ∈   R  (12) 

Actually, equation (1) has mapped the membrane potential 
to the spiking neuron firing time. Note that equation (1) 
contains the logic operator and it is an event mapping 
function. In order to design the BP for the SNNs in  
Figure 1, a continuous mapping function and its 
corresponding vector function is needed. For this purpose, 
equations (11) and (12) are defined. However, both 
equations (11) and (12) have no explicit form expression 
about equation (11). It is hard to obtain the explicit function 
and its derivative when the BP is deduced. Fortunately, the 
explicit function and its derivative are not inevitable due to 
the existence of the SpikeProp approximation (Bohte et al., 
2002). 

Now, the operation in the hidden layer can be written by 

( )( )( ) ( )( )diag T T
H HI HI I d HI HI I= =t f W Y t f W Y t  (13) 

Here fd is the map from n n×R  to .nR  
At last, with the topological structure in Figure 1, the 

input-output mapping of the SNNs can have the form of 

( )( )( )( )TT
O d OH OH d HI HI I==t f W Y f W Y t  (14) 
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Figure 1 Topological structure of the SNN 

 

 
2.3 Hybrid learning rule 

Assuming that there exist the optimal weight ( )k
jiω  and the 

optimal weight matrix ,jiW  the membrane potential of the 
optimal neuron can be written as 

( ) ( )( ) ( )k k
j ji ji

i k

u t ω y t=  (15) 

Accordingly, the optimal firing times of the SNNs output 
can have the form of 

( )( )( )( )TT
O d OH OH d HI HI I=t f W Y f W Y t  (16) 

From equation (16), the system error can be obtained by the 
optimal firing times minus the firing times, that is, 

O O O= −e e t  (17) 

According to equation (17), the learning cost function of the 
SNNs can be described by 

1
2

T
OOE = e e  (18) 

The gradient descent weight update has the form of 

Δ ji j
ji

E∂= −
∂

W η
W

 (19a) 

Δ OH o
OH

E∂= −
∂

W η
W

 (19b) 

Δ HI h
HI

E∂= −
∂

W η
W

 (19c) 

Here ηj, ηo and ηh indicate learning rates, it is positive 
definite matrices and their dimensions are in accordance 
with the change of the neurons but its elements are kept 

unchanged. This paper defines ηj, ηo and ηh as diagonal 
matrices in the input, hidden and output layers, described by 

( )
( )
( )

1 2 | |

1 2 | |

1 2 | |

diag

diag

diag

j j

h H

o O

η η η

η η η

η η η

=

=

=







η

η

η

 

Lemma 1 (Shrestha and Song, 2017): Define (diag( ))y f= AB  
( ) : ,nf= →x R R  where ,n m m n× ×∈ ∈A BR R  and x  

( )diag .n= ∈AB R  Then, we have diag .Ty y∂ ∂ =  ∂ ∂ 
B

A x
 

According to Lemma 1, the gradient of the 

( ) ( ) ( )
| |1

1 1 | | | |

diag

diag

O
OH

OH O O

T
Oo

OH
o o O O

E E

ee e
u t u t u t

∂ ∂ ∂ =  ∂ ∂ ∂ 
   =     

 
  

t Y
W u t

Y
 (20) 

Considering the SpikeProp approximation around the 
neuron firing time, we have 

( )( )
( ) ( ) ( ) ( )

1| j

j j j j
u θ

j j j j j j j j

f u t t t
u t u t u t u t=

∂ ∂ ∂ −= = =
∂ ∂ ∂ 

 (21) 

Since the firing time of a spiking neuron only depends  
on its membrane potential, we can have the following 
intermediate variable, defined by 

O
O

O O

E∂ ∂=
∂ ∂
tδ
u t

 (22) 

where .
( )
o

o
o o

eδ
u t

=


 

Substituting equation (22) into equation (20) yields 
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( )diag o OH
OH

E∂ =
∂

δ Y
W

 (23) 

In the hidden layer, the gradient of the weights has the form 
of 

( )diag H HI
HI

E∂ =
∂

δ Y
W

 (24) 

In equation (24), δH is determined by 

H H O
H O

H H H H

E∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂
t t uδ δ
u t u t

 (25) 

where 

( )

( ) ( )

( )

( )
( )

1

1

h
ok oh

o oh
o Oo k

h O
h h h h h

O
O

h h h

θ y tδ ω
t

δ
u t u t t

u t t

∂
∂ ∂= = −

∂
∂=
∂

 
 



u δ

t e

 (26) 

Finally, the weight update rule based on the SpikeProp 
algorithm at the pth iteration is formulated by 

( 1) ( ) diagji ji j jip p+ = −W W η Y  (27) 

As far as each spiking neuron is concerned, the weight 
update rule via the SpikeProp algorithm is 

( 1) ( )ji ji j j jiω p ω p η δ y+ = −  (28) 

Similarly, the weight update rule between the output and 
hidden layers at the pth iteration can be written by 

( )( 1) ( ) diagOH OH O O OHp p+ = −W W η δ Y  (29) 

Concerning each connection, this weight update rule is 

( 1) ( )oh oh o o ohω p ω p η δ y+ = −  (30) 

With regard to the weight up rule between the hidden and 
input layers, we can have 

( )( 1) ( ) diagHI HI h h HIp p+ = −W W η δ Y  (31) 

( 1) ( )hi hi h h hiω p ω p η δ y+ = −  (32) 

Inherently, the SpikeProp algorithm is similar to the error 
BP. It characteristic is that every connection between two 
layers consists of a fixed number of delayed synaptic 
potentials. There are many techniques to enhance the 
generalisation performance and the convergence speed, such 
as additional learning rules, having a momentum term and 
so on. 

For this purpose, this paper employs the adaptive 
learning rate technique and adds a momentum term at the pth 
iteration. Note that equations (27), (29) and (31) are 
equivalent to equations (28), (30) and (32), respectively. 
Thus, equations (28), (30) and (32) are listed to illustrate the 
designed hybrid algorithm. Finally, the weight update rule 
has the form of 

( 1) ( ) ( 1) Δ ( 1)
( 1) ( ) ( 1) Δ ( 1)
( 1) ( ) ( 1) Δ ( 1)

ji ji j j ji j ji

oh oh o o oh o ji

hi hi h h hi h hi

ω p ω p η p δ y ω p
ω p ω p η p δ y ω p
ω p ω p η p δ y ω p

+ = − + + −
+ = − + + −
+ = − + + −

α
α

α
 (33) 

Here ηj(p + 1), ηo(p + 1) and ηh(p + 1) are adaptive learning 
rates and they are adjusted in light of the delta-bar-delta 
rule; αj, αo and αh are momentum coefficients. 

So far, the SNNs in Figure 1 have been structured with 
the SpikeProp-based hybrid learning rule. 

3 Wind speed date 
3.1 Dataset 
The data of wind speed are gotten from a Canadian website 
‘http://climate.weather.gc.ca/’. The data are measured in 
Regina, Saskatchewan. This city is in Canada and its 
geographical coordinates are located at 5°°25’56” North and 
104°39’58” West. This paper selects the data of wind speed 
between July 1, 2015 and July 31, 2015. The dataset 
contains a full month and it is able to represent the 
characteristics of wind speed in this short-term period. In 
this dataset, the sampling period is 1 hour so that  
24 samples can be obtained in one day and there are  
744 samples in this dataset. For each sample, the wind 
speed is not only contained, but also the wind direction, 
temperature, humidity and air pressure are included. 

In practice, some bad data may be included in this 
dataset because of measuring error and mis-registration. In 
order to utilise the dataset, the availability of these data has 
to be checked. The purpose of such pre-processing is to 
eliminate the adverse effect of these bad data. Then, the 
ARMA method is adopted to calculate new data so that the 
number of data in this set is kept unchanged as 744. These 
data are illustrated in Figures 2–6. 

Figure 2 Hourly data of wind speed from July 1 to July 31 in 
2015 (see online version for colours) 

 

Figure 3 Hourly data of wind direction from July 1 to July 31 in 
2015 (see online version for colours) 
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Figure 4 Hourly data of air pressure from July 1 to July 31 in 
2015 (see online version for colours) 

 

Figure 5 Hourly data of temperature from July 1 to July 31 in 
2015 (see online version for colours) 

 

Figure 6 Hourly data of humidity from July 1 to July 31 in 2015 
(see online version for colours) 

 

3.2 Data analysis 
Consider the variables of wind speed, wind direction, 
temperature, humidity and air pressure in Figures 2–6. The 
units of these variables are completely different from each 
other so that it is hard to analyse them by the statistic 
method. In order to deal with this issue, all the data of these 
variables are non-dimensionalised and normalised. For each 
variable, the normalised formula is described by 

Θ min(Θ)
max(Θ) min(Θ)

m
m

−=
−

ϑ  (34) 

Here Θ indicates the dataset of a variable; Θm is the mth 
element in this dataset and ϑm is its normalised one; min() 
and max() mean the maximum and minimum elements in 
this dataset. 

Take two datasets into consideration. Their correlation 
coefficient can be formulated by 

( )
( ) ( )

ΦΨ
cov Φ, Ψ

Φ Ψ
ρ

D D
=  (35) 

Here Φ and Ψ indicate two datasets; cov() means their 
covariance; D() delegates the variance of each set. 

Finally, the correlation coefficients of wind speed with 
respect to wind direction, air pressure, temperature and 
humidity are calculated and listed by Table 1. 

Table 1 Some correlation coefficients 

Wind speed with respect to Correlation coefficients 

Wind direction 0.82 
Air pressure –0.52 
Temperature 0.44 
Humidity –0.47 

From Table 1, it is apparent that the variable of wind speed 
is strong direct relationship with respect to the variable of 
wind direction, it is moderate with respect to the variable of 
temperature, and it is moderately negative correlation with 
respect to the variables of air pressure and humidity. Since 
the wind speed modelling is rather difficult and complex  
by the first principle method, this paper explores the 
learning-based modelling for the wind speed. The model is 
intelligent on basis of SNNs. 

Concerning the SNNs method, an important step is to 
decide the input variables. Redundant data cannot benefit 
the modelling accuracy and they will definitely increase the 
computational burden. According to the results in Table 1, 
the four variables, that is, wind direction, air pressure, 
temperature, and humidity, are associated with the variable 
of wind speed very much. Consequently, the wind direction, 
air pressure, temperature and humidity will be employed as 
the input data of the SNNs besides the wind speed, which 
can contribute to the modelling accuracy of the wind speed. 

4 Comparisons 
In the dataset, we have 744 samples, which are divided into 
two groups. The first group containing the ahead 720 data is 
treated as the training data. The second group contains the 
last 24 data that are adopted as the testing data. Such 
division indicates the number of neurons at the output layer 
of the SNNs should be 24. 

Concerning the computational burden, the 24 time-series 
data of the wind speed are designed as the inputs. 
Considering the effect of the wind direction, air pressure, 
temperature and humidity, the averages of the wind speed 
and the wind direction, air pressure, temperature and 
humidity at the 24 samples are also employed as the inputs 
in order to refine the modelling accuracy. 

Such structure suggests that the 24 time-series data and 
the averages of the wind speed and the wind direction, air 
pressure, temperature and humidity are utilised to forecast 
the subsequent 24 data of wind speed. 

4.1 Parameters of the SNNs 
According to the hardware configuration of the computer, 
the number of neurons at the hidden layer is set to 40. 
Similarly, the number of synaptic connections between the 
input and hidden layers is set to 16 and the number of 
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synaptic connections between the hidden and output layers 
is set to 16. The three numbers are selected by trial and error 
and they are picked up by the trade-off between the 
modelling accuracy and the computational time. For the 
synaptic delay, its synaptic delay is set to 1 ms. The 
synaptic time constant τs is set to 5 ms. The threshold θ is  
1 mV. The momentum coefficients αj, αo and αh are set to 
0.1. The initial values of ηj, ηo and ηh are set to 0.05 and 
they are they are adjusted in light of the delta-bar-delta rule 
during the learning process. The initial values of ωji, ωoh and 
ωhi are set to the random number in the closed interval [0, 1] 
and they are updated by the formulas (33). 

4.2 Results 
The ahead 720 data, that is, the data from July 1 to July 30, 
are utilised as training data. These data are used to train all 
the four neural networks. Once the neural networks have 
been trained, all the weights and parameters are kept fixed, 
that is, the learning-based forecasting model of wind  

speed has been fulfilled. The last step is to verify the 
modelling accuracy via some testing data. In this paper, the 
data from the last day, July 31, are employed to verify the 
performance of these neural networks. The forecasting 
performance of the four types of neural networks is 
demonstrated in Figure 7. 

From Figure 7, it is apparent that both the SNN-based 
approaches in Figures 7(a)–7(b) have the better 
performance. To some extent, the BP and RBF neural 
networks in Figures 7(c)–7(d) could be available to model 
the wind speed, but they are not accurate enough and their 
errors are worse than the SNN-based approaches. As far as 
the applications in the real-world are concerned, the  
wind-speed forecasting is usually the first step for the 
subsequent dispatch. Therefore it is expected to forecast the 
accuracy as well as possible so that the SNN-based 
approaches are more potential in reality, compared to the 
modelling by the BP and RBF networks. 

 

Figure 7 Comparisons of the performance by four kinds of neural networks, (a) BP neural networks (b) RBF neural networks  
(c) SNNs by the basic SpikeProp (d) SNNs by the designed hybrid algorithm (see online version for colours) 
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Further, for the purpose of measuring the modelling 
accuracy, some indexes are introduced, calculated and listed 
by Table 2. The indexes in Table 2 are defined as follows. 
MAE, MAPE and RMSE are short for mean absolute error, 
mean absolute percent error and root mean square error, 
respectively. They are defined by 
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Here N is the number of samples, iv  is the forecasting wind 
speed of the ith sample and vi is the true wind speed of the ith 
sample. 

Table 2 Comparisons from the aspect of statistic indexes 

Indexes 
Approaches 

MAE MAPE RMSE 

BP neural networks 0.98 22 1.18 
RBF neural networks 0.68 16.2 0.87 
SNNs by the basic SpikeProp 
by Shrestha and Song (2017) 

0.52 11.1 0.63 

SNNs by the hybrid algorithm 0.35 7.5 0.42 

Figure 8 Comparison of error convergence by the SNNs with 
two kinds of learning algorithms (see online version  
for colours) 

 

Finally, Figure 8 illustrates the error convergence of the two 
SNN-based approaches. From Figure 8, the delta-bar-delta 
rule and the momentum term in the designed hybrid 
algorithm can effectively expedite the error convergence 
and apparently shorten the number of iterations. From  
Table 2, the SNNs by the hybrid algorithm have the slight 
better performance than the SNNs by the basic SpikeProp 
(Shrestha and Song, 2017). In Figure 8, such a hybrid 
algorithm can apparently refine the convergence. 

5 Conclusions 
Concerning the forecasting problem of wind speed, this 
paper has developed a learning-based method. Such a 
method adopts the SNNs with the adaptive learning rate and 
the momentum term. The hourly wind speed data from the 
city of Regina in Canada are utilised as the training and 
testing dataset. The data not only set contains the wind 
speed, but also it has wind direction, air pressure, 
temperature and humidity. Through the data pre-processing, 
we get 744 data from July 1, 2005 to July 31, 2005. The 
correlation coefficients of these facts with respect to wind 
speed, it reveals that wind speed has a strong direct 
relationship with wind direct. Among the 744 data, the head 
720 data are adopted as the training data and the other  
24 data are considered as the testing data. In order to verify 
the feasibility and validity of the SNNs with the hybrid 
algorithm, other three neural networks, that is, the BP neural 
networks, the RBF neural networks and the SNNs  
with the basic SpikeProp, are taken into consideration as 
comparisons. Firstly, these four kinds of neural networks 
are trained by the training data. Then, the well-trained 
neural networks take charge of forecasting the testing data. 
The forecasting results by the four kinds of neural networks 
have been illustrated. Some statistic indexes such as MAE, 
MAPE and RMSE are calculated. Compared with the 
forecasting results by the BP neural networks and the RBF 
neural networks, the forecasting results by two kinds of 
SNNs have higher accuracy. Further, the results by the 
SNNs with the hybrid algorithm are more accurate than the 
results by the SNNs with the basic SpikeProp. However, 
this learning-based forecasting approach depends on the 
pre-processed training data. In reality, any measured data 
must contain noise or error. Currently, we are studying this 
issue and theoretically analysing the adverse effect of the 
bad data. 
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