Synthesis and microstructure of gallium substituted cobalt ferrite nanoparticles by hydrothermal method

Gayathri Sivaraman and S. Kalainathan*

Center for Crystal Growth,
VIT University,
Vellore 14, Tamil Nadu, India
Email: gayunaren@gmail.com
Email: kalainathan@yahoo.com
*Corresponding author

Abstract: Magnetic CoFe$_{2-x}$Ga$_x$O$_4$ nanoparticles were successfully synthesised via hydrothermal method. The samples were characterised by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM). The experimental results showed that the CoFe$_{2-x}$Ga$_x$O$_4$ were composed of single phase spinel structure and the average crystallite size is between 42 and 57 nm. The saturation magnetisation (Ms) of the CoFe$_{2-x}$Ga$_x$O$_4$ nanoparticles decreased linearly as the contents of Ga increased for x = 0.2–0.8 which can be used in sensor applications.

Keywords: magnetic nanoparticles; hydrothermal method; field emission scanning electron microscopy; FESEM; HRTEM; VSM magnetic studies.

Biographical notes: Gayathri Sivaraman is a PhD student of VIT University, Vellore, TamilNadu, India. She has completed her VIT University, Vellore, Tamil Nadu, India. She completed her post-graduation from VIT University, Vellore, Tamil Nadu, India. Her current research interests include magnetic nanoparticles.

S. Kalainathan is a Senior Professor in VIT University, Vellore, Tamil Nadu, India. He has specialisation in the field of crystal growth, NLO materials and nanomaterials.

1 Introduction

Ferrites general structure [A$^{2+}$]$_{tet}$ [B$^{3+}$]$_{octa}$ O$_4$ are well known for their electrical, magnetic and catalytic properties (Lo et al., 2005; Koseoglu et al., 2011). In a spinel structured compound AB$_2$O$_4$(A site = divalent cations and B site = trivalent Fe ions) one unit cell contains 32 oxygen atoms that are in direct contact to one another forming a closed-pack face-centred cubic structure with eight tetrahedral (A) and 16 octahedral (B) occupied sites (Kumar and Kar, 2011; Mozaffari et al., 2010). CoFe$_2$O$_4$ has an inverse spinel
structure with Co$^{2+}$ ions in the (B) sites and Fe$^{3+}$ ions equally distributed between tetrahedral (A) and octahedral (B) sites. Therefore, by substituting various metal cations change in properties can be observed in these nanoferrites (Patil et al., 2009; Waje et al., 2010). Cobalt ferrite-based composites have high magnetostriction λ, high sensitivity of magnetic induction to applied stress $dB/d\sigma$, are chemically very stable and generally of low cost. These factors make these materials attractive for use in magnetoelastic sensors (Chen et al., 1999, 2000). Standard ceramic method has several disadvantages including impurities introduced during the grinding process, poor control of stoichiometric composition, particle-size inhomogeneity, and high sintering temperature. Preparation of ferrites using soft chemistry routes has gained importance due to their advantages in fulfilling the required demands of the processing technologies especially with economic considerations. In Hydrothermal method the chemical reactions occur in aqueous solutions above 100°C under increased pressure, usually equilibrium water pressure. The hydrothermal method can be useful to control grain size, particle morphology, crystalline phase and surface chemistry through regulation of the solution composition, reaction temperature, pressure, solvent properties, additives and aging time (Carp et al., 2004). Song et al. (2007) investigated magnetic properties of a series of Ga-substituted Co ferrites, CoFe$_{2-x}$Ga$_x$O$_4$ with x: 0.2–0.8 and found that the magnitude of magnetostriction decreases monotonically while the magnitude of maximum strain derivative $(dk/dH)_{\text{max}}$ increased for small amount of Ga. They inferred that adjusting Ga content in cobalt ferrite can be a promising route for controlling critical magnetic properties of the material for practical stress sensor applications. No detailed report has been cited in the literature on the structural, electrical and magnetic properties of Ga substituted Co ferrites nanoparticles by hydrothermal method.

2 Experimental procedure

CoFe$_{2-x}$Ga$_x$O$_4$ powders with x: 0.2, 0.4, 0.6, 0.8 is prepared by hydrothermal method (Zhang et al., 2010; Khorrami and Manuchehri, 2013) with the aqueous solutions of Co (NO$_3$)$_2$.6H$_2$O, Fe (NO$_3$)$_2$.9H$_2$O and Ga (NO$_3$)$_3$.3H$_2$O mixtures, respectively, in alkaline medium. The solutions of Co (NO$_3$)$_2$.6H$_2$O, Fe (NO$_3$)$_2$.9H$_2$O and Ga(NO$_3$)$_3$.3H$_2$O in their stoichiometry (0.1M of Co (NO$_3$)$_2$.6H$_2$O in 100 ml, 0.18M of Fe (NO$_3$)$_2$.9H$_2$O in 100 ml, 0.02M of Ga (NO$_3$)$_3$.3H$_2$O in 100 ml in the case of $x = 0.2$ (CoFe$_{1.8}$Ga$_{0.2}$O$_4$) and similarly for other values of (x) were dissolved in double distilled water with a constant stirring. The pH maintained was between 11–12 using NaOH solution. The prepared mixed solution was transferred in to a 250 ml Teflon lined stainless autoclave. The autoclave was sealed and treated at 120°C for 24 hours. After the hydrothermal reaction time, the autoclave was taken out and the autoclave was cooled to room temperature naturally. The samples obtained were washed four to five times with deionised water and ethanol. A general flow chart of synthesis process in shown in Figure 1. The product was dried in hot air oven at 100°C for overnight to remove moisture. The dried powder was mixed homogeneously in an agate mortar and pestle for 2 hours. This homogenous mixture was sintered at 600°C for 6hrs in a hot air furnace and again the grinding was repeated.
3 Measurements

X-ray powder diffraction analysis was carried out on Bruker, D8 Advance model diffractometer [X-ray diffraction, (XRD)] using Cu Kα. Field emission scanning electron microscope (FE-SEM with EDX using Carl Zeiss SUPRA-555) was used to investigate the surface morphology and the elemental composition of the samples. The samples were all coated with carbon prior to SEM analysis.

The nanoparticles morphology of the annealed samples was confirmed using high resolution tunnelling electron microscope (HR-TEM) PHILIPS, Model: CM200. Room temperature magnetic measurement of the samples was carried out with vibrating sample magnetometer (VSM). The parameters like saturation magnetisation (Ms), coercive force (Hc) and remanent magnetisation (Mr) were evaluated.

4 Result and discussion

4.1 XRD analysis

The powder XRD pattern of \(\text{CoFe}_{2-x} \text{Ga}_x \text{O}_4 \) for \(x: 0.2, 0.4, 0.6 \) and 0.8 by the hydrothermal method is shown in Figure 2 in which it is confirmed that all the samples have a cubic spinel structure. The average crystallite size for each composition was calculated using the Scherrer formula (Culity, 1978) and found that the particle size increases with increasing concentration of gallium in cobalt ferrite from 42 nm for \(x = 0.2 \) to 57 nm for \(x = 0.8 \).
4.2 Structural analysis

Figure 3 shows the FESEM of the CoFe$_{2-x}$Ga$_x$O$_4$ ferrite samples studied in the present work. The average grain size was determined using the linear intercept method (Postupolski, 1988) estimated using the relation

$$G_{\text{avg}} = \frac{1.5L}{(M \times N)}$$

where L is the total test line length, M is the magnification and N is the total number of interception for all the sample and the values are presented in Table 1. It is evident from Table 1 that the grain size of all the samples is in nanometer dimension.
Table 1 Saturation magnetisation (Ms), remanence magnetisation (Mr), coercivity (Hc), remanence ratio (Mr/Ms), anisotropy constant (K), of CoFe$_{2-x}$Ga$_x$O$_4$ system

<table>
<thead>
<tr>
<th>Composition</th>
<th>Crystalline size (nm)</th>
<th>Ms (emu/g)</th>
<th>Mr (emu/g)</th>
<th>Hc (Oe)</th>
<th>Mr/Ms</th>
<th>K (erg/Oe) 10^{-4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe$_2$O$_4$</td>
<td>66</td>
<td>56</td>
<td>22.27</td>
<td>1,095.17</td>
<td>0.3976</td>
<td>62.581</td>
</tr>
<tr>
<td>CoFe${1.8}$Ga${0.2}$O$_4$</td>
<td>42</td>
<td>45.54</td>
<td>16.02</td>
<td>809.49</td>
<td>0.3518</td>
<td>37.616</td>
</tr>
<tr>
<td>CoFe${1.6}$Ga${0.4}$O$_4$</td>
<td>46</td>
<td>26.12</td>
<td>7.42</td>
<td>590.97</td>
<td>0.284</td>
<td>15.751</td>
</tr>
<tr>
<td>CoFe${1.4}$Ga${0.6}$O$_4$</td>
<td>53</td>
<td>20.23</td>
<td>3.902</td>
<td>486.98</td>
<td>0.1928</td>
<td>10.052</td>
</tr>
<tr>
<td>CoFe${1.2}$Ga${0.8}$O$_4$</td>
<td>57</td>
<td>48.12</td>
<td>13.36</td>
<td>274.56</td>
<td>0.2776</td>
<td>13.481</td>
</tr>
</tbody>
</table>

4.3 TEM analysis

A TEM micrograph produces high resolution, black and white images due to the interaction of prepared sample and energetic electrons in the vacuum chamber. The TEM micrograph of CoFe$_{1.2}$Ga$_{0.8}$O$_4$ by hydrothermal method is shown in Figure 4. As can be seen the distribution of the particles is mostly uniform and their shape is almost spherical.

Figure 4 TEM micrographs of CoFe$_{1.2}$Ga$_{0.8}$O$_4$ (see online version for colours)

4.4 VSM analysis

The room temperature hysteresis loops for CoGa$_x$Fe$_{2-x}$O$_4$ samples ($x = 0.2$, 0.4, 0.6 and 0.8) which were calcinated at 600°C are shown in Figure 5, the inlet of the Figure 5 shows the hysteresis loop of pure CoFe$_2$O$_4$ nanoparticles. The substitution of nonmagnetic ion Gallium, which has a preferentially A site occupancy results in the reduction of the exchange interaction between A and B sites. Hence, by varying the Ga content, it is possible to vary magnetic properties of the nanoparticles. The saturation magnetisation (Ms), remanent magnetisation (Mr) and coercivity (Hc) values are listed in Table 1 for the given samples. The saturation magnetisation (Ms) decreases with increase of crystallite size. According to Kim and Shima (2007), there are two possible models to explain the decrease of Ms as the content of Ga$^{3+}$ increases: the surface spin disorder model and the uniformly reduced magnetic moment model. For the as-prepared CoGa$_x$Fe$_{2-x}$O$_4$ nanoparticles, the decrease of Ms with increasing Gallium content is caused by the higher magnetic moment of Co$^{3+}$ than Ga$^{3+}$ at octahedral sites in the inverse spinel structure (Qi et al., 2010). Alignment of number of atomic spins along with
the applied magnetic field increases with the increase of magnetic domain, which leads to enhancement of the saturation magnetisation with the crystallite size (Patil et al., 2009). For CoGa$_x$Fe$_{2-x}$O$_4$ bulk samples, the saturation magnetisation gradually increased up to $x = 0.4$ and then decreased for higher x content (Bhattacharya and Darshane, 1993; Ranvah et al., 2008). In the case of CoGa$_x$Fe$_{2-x}$O$_4$ nanoparticles for low Ga substitution, Ga$^{3+}$ ions appear in the tetrahedral site. While at high Ga concentration, Ga$^{3+}$ preferred the octahedral site. This indicates that Ga$^{3+}$ ions substitute Fe$^{3+}$ in A- and B-sites. The value of coercivity H_c decreases with increase in Ga$^{3+}$ concentration. A decrease in coercivity with increase in gallium concentration may be attributed to the decrease in anisotropy field, which in turn decreases the domain wall energy (Yakovlev et al., 1969; Gul et al., 2007) or decrease of the crystallite size (Kumar et al., 2013). From the values of coercivity H_c and the saturation magnetisation M_s the value of anisotropy constant can be calculated using the relation (Wahba and Mohamed, 2014).

$$H_c = 0.98 \frac{K}{M_s}. $$

Figure 5 Hysteresis loop for pure CoFe$_2$O$_4$ (inset) and CoFe$_{2-x}$Ga$_x$O$_4$ by hydrothermal method (see online version for colours)

The variation of anisotropy constant, K with Ga$^{3+}$ concentration is shown in Table 1. The change in K value could be caused by either of two mechanisms (Ranvah et al., 2008):

1. according to the one-ion anisotropy model, the high anisotropy of cobalt ferrite is primarily due to the presence of Co$^{2+}$ ions on the octahedral sites of the spinel structure

2. the present of Ga$^{3+}$ in tetrahedral site decreases the anisotropy due to the reduction of the tetrahedral-octahedral exchange coupling.

Hence, we observe that the M_s, M_r and H_c values obtained for the CoGa$_x$Fe$_{2-x}$O$_4$ nanoparticles are less than that of the values obtained by Song et al. (2007) in bulk growth.
5 Conclusions

The nanoparticles of CoGa\textsubscript{x}Fe\textsubscript{2−x}O\textsubscript{4} were synthesised by hydrothermal method. The size of the nanoparticles is in the range of 42–57 nm which are in good agreement with the values obtained by XRD, SEM and TEM indicating that there are no agglomerations. The saturation magnetisation (Ms), remanent magnetisation (Mr) and coercivity (Hc) decreases with an increase in Ga content. The saturation magnetisation (Ms) decreases due to increase in the crystallite size. The Ms, Mr, Hc values obtained for CoGa\textsubscript{x}Fe\textsubscript{2−x}O\textsubscript{4} nanoparticles are less than the values obtained by bulk method. This property makes the CoGa\textsubscript{x}Fe\textsubscript{2−x}O\textsubscript{4} to play a vital role in sensor devices applications.

References

Wahba, A.M. and Mohamed, M.B. (2014) ‘Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co$_{0.8}$Ni$_{0.2}$Fe$_2$O$_4$ ferrite’, Ceram. Int., Vol. 40, No. 4, p.6127.

