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Abstract: Capacitated arc routing problem (CARP) is known as NP-hard 
combinatorial optimisation problem. Cuckoo search (CS) is a recent meta-
heuristic algorithm inspired by breeding the behaviour of cuckoos. CS has 
proved to be very effective in solving continuous and discrete optimisation 
problems. In discrete CS for solving CARP (DCSARP), the solution is encoded 
as a sequence of integer numbers that are positioned according to the order 
between their components. This discretisation is the key for using CS for 
solving combinatorial optimisation problems. The experimental results showed 
that DCSARP can be better than some meta-heuristics in relation to the quality 
of solution and robustness. 
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1 Introduction 

The aim of arc routing problem (ARP) is to find routes including a subset of edges that 
minimise a given cost. The ARP can be with or without constraints. One of the well-
known variants of ARP is the CARP. The CARP consists of vehicles set, which must 
satisfy the clients’ demands spread on edges. These can be a service, a supply or a 
collection measured with the capacity of each edge. CARP occurs frequently in many 
manufacturing and industrial services. Many of the applications are related to network 
roads, for instance mail delivery, waste and milk collection, water readings, electricity 
meters and others (Dror, 2000). Despite the importance of CARP in many real 
applications, the practical ones remain less widespread because it has many variants and 
each manufacturing or service industrial has its variant. Moreover, the CARP is known to 
be NP-hard (Golden and Wong, 1981), even in the case of single-vehicle called rural 
postman problem (RPP). Since exact methods are still limited to 190 edges (Bartolini, 
Cordeau and Laporte, 2013), heuristics and meta-heuristics are required for solving large 
instances. Heuristic methods include augment-merge (Golden and Wong, 1981), path 
scanning (Golden, DeArmon and Baker, 1983), construct-and-strike (Pearn, 1989), 
augment-insert (Pearn, 1991), Ulusoy’s (1985) tour splitting algorithm and the route-first 
cluster-second heuristic (Stern and Dror, 1979). 

Meta-heuristic algorithms have become the good compromise for many problems, 
which have big instances. Meta-heuristics are used for solving NP-hard problems because 
they have proved their potential and effectiveness in many problems. Furthermore, the 
meta-heuristics are general algorithms characterised by the flexibility and simplicity 
allowing their use to solve many problems by either extension or hybridisation. In the 
other hand, they can be adapted easily or combined with other methods to solve many 
real-world optimisation problems from the fields of operations research and engineering 
of artificial intelligence. The solution found by the meta-heuristic is not always the best, 
but it has a good quality and available in a reasonable time (Nesmachnow, 2014; Talbi, 
2009). 

Several approaches based on meta-heuristics were developed to solve CARP and its 
variants for finding a solution with effectiveness, quality and reasonable time. Beullens  
et al. (2003) developed a guided local search (GLS). Instead of evaluating 
neighbourhoods set of a given solution, GLS evaluates only a subset of edges based on 
the information marked for each edge in the previous search procedure. As a standard 
meta-heuristic, genetic algorithm was applied to an extended version of CARP 
(Lacomme, Prins and Ramdane-Cherif, 2004). In their work, a memetic algorithm (MA)  
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is proposed which combines genetic algorithm with local search. The chromosome is 
encoded as a sequence of required edges and used in Ulusoy’s heuristic to get CARP 
solution. MA was tested on instances with up to 190 edges and 140 vertices. Based on 
vehicle routing problem (VRP) contributions, some studies were devoted to transform 
CARP to VRP (Longo, Aragão and Uchoa, 2006). 

As real application of CARP, the salting route problem was solved using evolutionary 
algorithm (EA) (Handa et al., 2006). EA uses the same encoding of MA but any of 
heuristics is used to obtain the solution. Polacek et al. (2008) proposed a variable 
neighbourhood search (VNS). In this work, the neighbourhood operator is applied on 
sequences of required edges. VNS uses Ulusoy’s algorithm to find all the trips. Brandão 
and Eglese (2008) proposed an adapted Tabu search algorithm (TSA) to solve CARP. 
TSA employs five heuristics to generate initial solutions. According to the used 
heuristics, two versions of TSA have been applied (TSA1 and TSA2). The first version 
uses only path scanning heuristic. However, the second version uses five heuristics. 
Another application of Tabu search with global repair operator is presented in Mei, Tang 
and Yao (2009). Contrary to TSA, the individual scheme is a sequence of vertices 
separated with the depot vertex. Furthermore, a solution can be infeasible. Another MA 
with extended neighbourhood search for CARP (MAENS) was proposed by the same 
authors in Tang, Mei and Yao (2009). They have employed a novel local search operator 
called merge-split. This later aims to modify a part of solution. At least, two routes are 
merged and the unordered list of required edges is used to reconstitute other routes. 

Ant colony optimisation (ACO) is another popular meta-heuristic for tackling the 
CARP, ACO was proposed in Santos, Coutinho-Rodrigues and Current (2010). In this 
work, the initial population is generated with different approaches and the local search is 
based on 12 move operators. Usberti, Paulo and André (2013) have tackled the CARP 
using GRASP with path re-linking. This approach contains construction and local search 
phases. In the construction phase, the solutions are generated using a greedy randomised 
heuristic. The local search phase improves the initial solutions using four move operators. 
Recently, a hybrid meta-heuristic approach (HMA) developed by Chen, Hao and Glover 
(2016). HMA initialises the population with path scanning heuristic and improves the 
solution using six move operators before introducing the main phase. Compared with 
other MAs, HMA uses a novel crossover operator and a local search. For more details on 
real applications of CARP, we recommend the recent state of art in the book of Corberan 
and Laporte (2015). 

The aim of this paper is the implementation of a new approach based on cuckoo 
search (CS) algorithm. The discretisation of the CS algorithm is required to solve the 
CARP. That is why we propose a discretisation of CS algorithm and the implementation 
of different steps according to this one. The use of Lévy flight function has a great role in 
the diversification and convergence to the optimal solution. The remainder of this paper 
is organised as follows: Section 2 presents the CARP formulation. An overview of the CS 
algorithm is presented in Section 3. In Section 4, the proposed approach is described. 
Experimental results are discussed in Section 5, and a conclusion is provided in  
Section 6.  
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2 Capacitated arc routing problem 

2.1 Intuitive presentation 

Like VRP, CARP is a widespread problem in combinatorial optimisation domain. In 
general, the CARP problems aim to determine the optimal set of rounds crossed by a fleet 
of vehicles to serve a set of customers spread on a given network (Golden and Wong, 
1981). In CARP, each arc or edge has a demand and two different costs: a routing cost 
and a serve cost. Most formulations of CARP problems neglect the cost of service. The 
basic variant of CARP is the RPP. In a RPP problem, a single vehicle, assumed to have 
unlimited capacity and serves all the arcs or edges in the network. The RPP is a 
generalisation of travel salesman problem (TSP) where the customers are the edges or 
arcs in the network. CARP is considered as a generalisation of RPP where we have a set 
of vehicles with limited capacity. By default, the vehicles have the same capacity.  

Informally, CARP solution is feasible, if and only if:  

• Each tour starts and ends in the one deposit of the network. 

• Each required edge (which has a strictly positive demand) is served on one vehicle. 

• The sum of demands collected or granted by each vehicle should not exceed its own 
capacity.  

2.2 Mathematical formulation 

Mathematically, several formulations have been proposed to model the CARP problem. 
Let us consider a graph G = (V, E), where V is a set of nodes and E is a set of edges, and 
K vehicles. Each edge e = (vi, vj) ∈E of G is presented with two arcs e1 = (vi, vj) and  
e2 = (vj, vi). e1 and e2 take the cost and request of e. Two sets of binary variables are used 
in this formulation: xp

ij (respectively lp
ij) equals 1 if the vehicle p passes by (respectively 

serves) the arc (vi, vj) and equals 0 otherwise. The problem consists in minimising the 
following quantity: 

( )ij ji
1

Min 
K

p p
e

p e E

x x w
= ∈

+∑∑  (1) 

( )( ) ( )( )i i i  , 1 ,   ,  p px v x v v V p Kδ δ+ − ∀ ∈= = … …  (2) 

( ) { }ij ji i j r
1

 1    ,    
K

p p

p

l l e v v E
=

+ = ∀ = ∈∑  (3) 
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The objective function represents the sum of routing and service costs of all edges or 
arcs. The first constraint (Eq. 2) ensures that each node v1 having an entry δ+(vi) must 
have an output δ−(vi) which allows vehicles to leave a node once they return to it. The 
second constraint ensures that each edge is served exactly once by one vehicle (Eq. 3). 
Equation (4) ensures that the vehicle can traverses the required edge more than once 
before he serves it. The capacity constraint is presented by inequality (Eq. 5) and the 
graph connectivity is ensured by constraint in (Eq. 6). Originally, this formulation was 
provided by Golden and Wong (1981) and then improved by Welz (1994). There are 
other formulations that improve this formulation in terms of variables number or the 
integration of other constraints concerning other variants of CARP (Dror, 2000).  

The search for a solution needs many steps starting from the construction of the order 
of the required edges and the way of edges assignment to vehicles. The solution is not 
feasible where an edge cannot be assigned to a vehicle (the capacity constraint) or it is 
impossible for a vehicle to move from one edge to another. Most industrial problems 
formulated by CARP have large instances, which increases the required computation 
exponentially depending on the size of problem. Therefore, it is better to find other 
techniques to deal with these problems. In this paper, we are interested in applying CS 
algorithm to tackle this problem.  

3 Cuckoo search 

Until now, several complex problems stay without optimal solutions. Indeed, the 
computation complexity of the exact methods increases exponentially with the size of 
those problems. That is why meta-heuristic algorithms are considered to be the best way 
for solving many difficult problems (Gandomi, Yang and Alavi, 2011). The majority of 
these algorithms have been inspired by the natural systems such as physical, biology, etc. 
Yang and Deb (2009) developed a bio-inspired algorithm namely CS which is based  
on the behaviour of cuckoo. cuckoos use an aggressive strategy of reproduction that 
involves the female hacks nests of other birds to lay their eggs. Sometimes, the egg of 
cuckoo in the nest is discovered and the hacked birds discard or abandon the nest and 
start their own brood elsewhere. CS is based on the following three rules:  
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• Each cuckoo lays one egg at a time, and put it in a randomly chosen nest. 

• The best nests with high quality of eggs (solutions) will carry over to the next 
generations. 

• The number of available host nests is fixed, and a host can discover an alien egg with 
a probability pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or 
abandon the nest to build a completely new nest in a new location.  

Concerning the first assumption, according to the problem, we can suppose that each 
cuckoo lays and put several eggs at a time. CS algorithm is presented in the pseudo-code 
as shown in Figure 1.  

Figure 1 Cuckoo search 

 

 

Cuckoo search algorithm is characterised by its simplicity because it uses few 
parameters. The original version of CS operates in continuous search space. In the 
standard CS algorithm, the new generation of cuckoos is based on Lévy flights (Eq. 8) 
named by the French mathematician Paul Lévy, representing a model of random walks 
characterised by step length, which obeys to the probability distribution. Lévy flight is 
used to model many transitions in the states of many phenomena physical, chemical, 
organic and natural in reality.  

( ) ( ) ( )1  Levy ,  t t
i ix x sα λ+ = + ⊕  (8) 

( ) ( )Levy , ~  , 1 3s s λλ λ− < ≤  (9) 

where ( )1t
ix +  and ( )t

ix  represent the solution i at time t and t + 1, respectively. α > 0 is the 

step size, which should be related to the scales of the problem of interests. Generally, α 
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takes the value of 1. The product ⊕ means entry-wise multiplications. This entry-wise 
product is similar to those used in PSO, but here the random walk via Lévy flights is 
more efficient in exploring the search space as its step length is much longer in the long 
run. 

Compared to results of several meta-heuristic algorithms such as PSO and GA (Yang 
and Deb, 2009), CS algorithm was applied for many optimisation problems and has 
shown an encouraging efficiency. CS algorithm has contributed for solving a lot of 
continuous problems and gives effective results. Unfortunately, the original CS algorithm 
allows only the resolution of many problems where the solution representation is based  
on continuous coordinates. Recently, some studies are proposed to solve some discrete 
problems using CS algorithm, for example, the travelling salesman problem (TSP) 
(Ouaarab, Ahiod and Yang, 2014) and job shop scheduling problem (Ouaarab, Ahiod and 
Yang, 2015). The adaptation of CS algorithm for solving CARP problems is detailed in 
the next section. 

4 Discrete cuckoo search for CARP 

4.1 CARP solution representation 

Cuckoo search algorithm was designed for continuous optimisation problems; therefore, it 
cannot be adopted directly to CARP problem. Basic CS solution is used to get the 
permutation of required edges. For that, we have used the smallest position value method 
(Tasgetiren et al., 2006) which sorts the indexes according to the ascending order of CS 
solution (Figure 2). The sorted CS solution becomes CARP solution with implicit paths 
between two consecutive required edges. Finally, the shortest path is computed with 
Dijkstra algorithm.  

Figure 2 An example of SPV method 

 

Two steps are used to construct the CARP solution. The first step assigns the required 
edges to vehicles using FIFO method (First In First Out). In the second step, the required 
edges and the depot vertex are connected with shorted paths. For the sake of clarity, 
Table 1 contains an instance of CARP. 
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Table 1 CARP instance 

Required edges 1 2 3 4 5 
Requests 2 4 3 4 3 

Figure 3 shows an example of CARP solution based on the CS solution in Figure 2 and 
the parameters of CARP instance in Table 1. The capacity of vehicles is 10. The required 
edges are in boldface. Dashed lines indicate shortest deadheading paths. With R required 
edges, the solution can be computed in O(2R). The passage on edges is established under 
the order in CS solution. Note that an infeasible solution can exist when FIFO method 
assigns only a sub-ensemble of required edges. In this case, we affect a penalty cost to 
this solution. 

Figure 3 An example of CARP solution with 2 vehicles 

 

4.2 Discrete cuckoo search algorithm 

After each iteration of the discrete cuckoo search for CARP (DCSARP) algorithm, each 
cuckoo creates a solution. The solution represents a sequence of the required edges. To 
build a CARP solution, we add a decoding mechanism that uses Dijkstra algorithm to 
find the routes between each pair of edges. Figure 4 gives the flowchart of the proposed 
DCSARP. It should be noted that the proposed algorithm can be extended to deal with a 
large number of discrete combinatorial problems. The discrete cuckoo search algorithm is 
presented as follows:  
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Figure 4 Flowchart of the DCSARP algorithm 

 

 

The first step in this algorithm is initialising the parameters. The main advantage of the 
DCSARP algorithm is that there are fewer parameters to be set compared to other 
population-based algorithms. There are essentially three main parameters to initialise; the 
population size N, the number of vehicles V and the required edges R. the size of nest 
(egg) is equal to R. In the second step, a swarm of N nests are created and initialised to 
generate some possible CARP solutions. Like any population-based algorithm, it is 
recommended to use some heuristics to get a diverse population containing both good 
and bad nests. Moreover, a distance matrix is created and initialised using costs vector D 
in the purpose of reducing the time convergence. The algorithm progresses through 
several generations according to the CS dynamics (Figure 5). During each iteration, a 
new cuckoo is built. The next step is the evaluation of the current cuckoo. For that, we 
apply a discretisation function to get the required edges sequence. This last is divided 
between vehicles using assignment function. 
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Figure 5 Discrete Cuckoo Search algorithm for CARP problem 

 

4.3 Moving in the search space 

To maintain the exploration of search space, CS uses lévy flight function which models 
random walks. The use of levy flight in discrete search space increases the intensification 
and therefore finding the best solution is delicate. That is why DCSARP associates with 
lévy flight other moves. The first move is insertion and the second is swap. According to 
the value of lévy flight, the corresponded move is carried. In insertion move, a candidate 
edge (only required edges) is removed from its current position and inserted in a 
randomly position (except the current position). The swap move is similar, two required 
edges are selected and a permutation is made. Figure 6a and b illustrates the lévy flight 
moving applied on example of Figure 3 using insertion and swap move, respectively. 
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Figure 6 Lévy flight moving 

 

5 Experimental results and discussion 

The proposed DCSARP algorithm is implemented in Java using NetBeans IDE 8.0.2 
under the 64 bits Seven Operating System. Experiments are concluded on laptop with 
configuration of Intel(R) CoreTM I3 2.20 GHz, and 4 GB of RAM. We tested the 
performance of DCSARP on 63 instances of three standard test data sets for CARP. All 
the edges are required in these networks and the capacities of vehicles are equal:  

• kshs: This data set was introduced in Kiuchi et al. (1995). It includes six undirected 
networks ranging from 6 to 10 nodes and 15 edges. 

• gdb: It was proposed by Golden, DeArmon and Baker (1983) to evaluate a 
capacitated version of Chinese Postman Problem. This set contains 23 undirected 
networks ranging from 7 to 27 nodes and from 11 to 55 edges. 

• val: Benavent et al. (1992) proposed data set which includes 34 undirected networks 
ranging from 24 to 50 nodes and from 34 to 97 edges.  
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The data sets are downloaded from http://logistik.bwl.uni−mainz.de/benchmarks.php. 
Table 2 summarises the parameter values of DCSARP algorithm which give the best 
results about both of kshs, gdb and val instances. We set different parameters based on 
parametric studies of pa, individuals and iterations number. In combinatorial problems, 
the lower and upper bounds have no influence on the results improvement. In the first 
(respectively second) study, all the parameters have been fixed except individual’s 
number (respectively iterations) which is variable in each run. The third study is based on 
pa. The pa has been setted at each run. In addition, the parameter pa is randomly setted at 
each iteration. 

Table 2 Parameters setting 

Parameter Value 
Population size 30 
Solution size Number of required edges 
Number of iterations 200000 
Bad solution probability (Pa) 0.2 
Lower bound (LB) 0 
Upper bound (UB) 1 

To ensure the DCSARP performance and to prove its abilities in solving ARPs, this 
section compares the proposed algorithm to several CARP solver algorithms. The results 
reported in Tables 3–5. All the tables list the name of instance and the corresponding 
characteristics as number of vertices |V|, required edges |E|, lower bound (Best known), 
and the best known given by our contribution and other works. In addition, the results are 
highlighted in bold for the instance on which DCSARP achieved the best solution among 
the compared methods. Following the recent practice in literature, we compare our 
DCSARP with four population-based algorithms (MAENS; Tang, Mei and Yao, 2009, 
ACO; Santos, Coutinho-Rodrigues and Current, 2010, GRASP; Usberti, Paulo and 
André, 2013 and HMA; Chen, Hao and Glover, 2016) and one local search algorithm 
(TSA; Brandão and Eglese, 2008):  

• GA: reports the best results on gdb, val, egl. 

• MAENS: reports the best results on gdb, val, egl, C-F obtained from 30 runs. 

• ACO: reports the best results on gdb, val, egl, C-F obtained from 10 runs. 

• GRASP: reports the best results on gdb, val, egl obtained from 15 runs. 

• HMA: reports the best results on gdb, val, egl, C-F obtained from 30 runs. Two 
versions proposed are HMA1 and HMA2. We chose the second version for 
comparison which gave the best results. 

• TSA: reports the best results on gdb, val, egl, C-G obtained from one run. Two 
versions proposed are TSA1 and TSA2. We chose the second version for comparison 
which gave the best results.  
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Table 3 Results for kshs instances 

File |V| |E| Best GLS BCPA DCSARP 
Kshs1 4 15 14661 14661 14661 14661 
Kshs2 4 15 9863 9863 9863 9863 
Kshs3 4 15 9320 9320 9320 9320 
Kshs4 4 15 11498 11498 11498 11498 
Kshs5 3 15 10957 10957 10957 10957 
Kshs6 3 15 10197 10197 10197 10197 

Table 4 Results for gdb instances 

File |V| |E| Best GA TSA2 GRASP ACO MAENS HMA2 DCSARP 
gdb1 12 22 316 316 316 316 316 316 316 316 
gdb2 12 26 339 339 339 339 339 339 339 339 
gdb3 12 22 275 275 275 275 275 275 275 275 
gdb4 11 19 287 287 287 287 287 287 287 287 
gdb5 13 26 377 377 377 377 377 377 377 377 
gdb6 12 22 298 298 298 298 298 298 298 298 
gdb7 12 22 325 325 325 325 325 325 325 325 
gdb8 27 46 348 348 352 348 348 348 348 350 
gdb9 27 51 303 303 317 303 303 303 303 308 
gdb10 12 25 275 275 275 275 275 275 275 275 
gdb11 22 45 395 395 395 395 395 395 395 395 
gdb12 13 23 456 458 458 458 458 458 458 458 
gdb13 10 28 536 538 540 536 536 536 536 544 
gdb14 7 21 100 100 100 100 100 100 100 100 
gdb15 7 21 58 58 58 58 58 58 58 58 
gdb16 8 28 127 127 127 127 127 127 127 127 
gdb17 8 28 91 91 91 91 91 91 91 91 
gdb18 9 36 164 164 164 164 164 164 164 164 
gdb19 8 11 55 55 55 55 55 55 55 55 
gdb20 11 22 121 121 121 121 121 121 121 121 
gdb21 11 23 156 156 156 156 156 156 156 156 
gdb22 11 44 200 200 200 200 200 200 200 200 
gdb23 11 55 233 235 235 233 235 233 235 233 
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Table 5 Results for val instances 

File |V| |E| Best GA TSA2 GRASP ACO MAENS HMA2 DCSARP 
1A 24 39 173 173 173 173 173 173 173 173 
1B 24 39 173 173 173 173 173 173 173 173 
1C 24 39 245 245 245 245 245 245 245 249 
2A 24 34 227 227 227 227 227 227 227 227 
2B 24 34 259 259 260 259 259 259 259 259 
2C 24 34 457 457 457 457 457 457 457 457 
3A 24 35 81 81 81 81 81 81 81 81 
3B 24 35 87 87 87 87 87 87 87 87 
3C 24 35 138 138 138 138 138 138 138 138 
4A 41 69 400 400 400 400 400 400 400 400 
4B 41 69 412 412 412 412 412 412 412 414 
4C 41 69 428 430 430 430 430 430 428 448 
4D 41 69 530 530 546 530 530 530 530 555 
5A 34 65 423 423 423 423 423 423 423 428 
5B 34 65 446 446 446 446 446 446 446 452 
5C 34 65 474 474 474 474 474 474 474 476 
5D 34 65 575 581 583 581 577 577 575 636 
6A 31 50 223 223 223 223 223 223 223 223 
6B 31 65 233 233 241 233 233 233 233 233 
6C 31 50 317 317 317 317 317 317 317 332 
7A 40 66 279 279 279 279 279 279 279 288 
7B 40 66 283 283 283 283 283 283 283 307 
7C 40 66 334 334 334 334 334 334 334 356 
8A 30 63 386 386 386 386 386 386 386 405 
8B 30 63 395 395 395 395 395 395 395 426 
8C 30 63 521 527 529 522 521 521 521 595 
9A 50 92 323 323 323 323 323 323 323 340 
9B 50 92 326 326 326 326 326 326 326 342 
9C 50 92 332 332 332 332 332 332 332 355 
9D 50 92 389 391 399 391 391 391 389 454 
10A 50 97 428 428 428 428 428 428 428 438 
10B 50 97 436 436 436 436 436 436 436 465 
10C 50 97 446 446 451 446 446 446 446 477 
10D 50 97 528 528 530 527 526 531 525 588 
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Note that the previous works did not report the kshs results so we chose a local search 
algorithm (GLS; Beullens et al., 2003) and Branch-and-cut-and-price algorithm (BCPA; 
Longo, Aragão and Uchoa, 2006).  

• GLS: reports the best results on kshs, gdb, val obtained from one run. 

• BCPA: reports the best results on kshs, gdb, val, egl.  

These reference algorithms were tested on different computers, compilers and operating 
systems. Hence, a fair comparison cannot be made. The comparison is based on a 
solution quality. In terms of time, the DCSARP is much more time-consuming than all 
the compared algorithms.  

As it can be seen from Table 3 and Figure 7, the results obtained by DCSARP and 
other algorithms (GLS and BCPA) in six instances of kshs are identical to the best 
solutions. Indeed, the Friedman test shows that our algorithm is competitive. 

Figure 7 Freidman test for kshs instances (see online version for colours) 
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Table 4 and Figure 8 show the comparison for 23 gdb instances. As it can be seen, 
DCSARP produces better results in 20 instances. We have only three instances with 
results under the best known (gdb8, gdb9, gdb13). The Friedman test shows that there is 
no significant difference between our algorithm results and the best-known ones. 

Figure 8 Freidman test for gdb instances 

 

Table 5 and Figure 9 show the comparison for val instances. As we can see, our approach 
finds only 11 best known out of 34 instances.  

Figure 9 Freidman test for val instances 
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6 Conclusion 

The work contribution resides on the use of CS algorithm to solve the capacitated arc 
routing problem (CARP), and the mechanism of discretisation of continuous solution. The 
proposed algorithm called DCSARP provides an effective way to generate CARP 
solutions. DCSARP moves from one solution to another new one in discrete space using 
a sequence of integers based on lévy flight, and a decoding mechanism to transform the 
sequence of integers to CARP solution. The lévy flight function was adapted to maintain 
the moving in search space. Hence, two move operators (insertion and swap) are 
associated to lévy flight function. DCSARP is capable of achieving better solutions in 
gdb and kshs instances. Unfortunately, it did not succeed to get better solutions in large 
instances as val instances. Although DCSARP has shown excellent diversification in our 
experimental studies, the stagnation and high computational cost present its 
disadvantages. They remain to address in future works. As perspective, we can include a 
heuristic to maintain the convergence of DCSARP.  
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