

 Int. J. Metaheuristics, Vol. 6, Nos. 1/2, 2017 37

 Copyright © 2017 Inderscience Enterprises Ltd.

Discrete cuckoo search applied to capacitated arc
routing problem

Badis Bensedira* and Abdesslam Layeb
Department of Computer Science and Its Applications,
Constantine 2 University,
Route Ain El Bey, Constantine 25017, Algeria
Email: bensedira-badis@hotmail.fr
Email: layeb.univ@gmail.com
*Corresponding author

Zineb Habbas
Department of Computer Science,
Lorraine University,
Ile du Saulcy, 57045, Metz Cedex, French
Email: zineb.habbas@univ-lorraine.fr

Abstract: Capacitated arc routing problem (CARP) is known as NP-hard
combinatorial optimisation problem. Cuckoo search (CS) is a recent meta-
heuristic algorithm inspired by breeding the behaviour of cuckoos. CS has
proved to be very effective in solving continuous and discrete optimisation
problems. In discrete CS for solving CARP (DCSARP), the solution is encoded
as a sequence of integer numbers that are positioned according to the order
between their components. This discretisation is the key for using CS for
solving combinatorial optimisation problems. The experimental results showed
that DCSARP can be better than some meta-heuristics in relation to the quality
of solution and robustness.

Keywords: ARP; arc routing problem; combinatorial optimisation; CS; cuckoo
search; meta-heuristics.

Reference to this paper should be made as follows: Bensedira, B., Layeb, A.
and Habbas, Z. (2017) ‘Discrete cuckoo search applied to arc routing problem’,
Int. J. Metaheuristics, Vol. 6, Nos. 1/2, pp.37–54.

Biographical notes: Badis Bensedira received his Master’s degree from
Constantine 2 University of M’sila, Algeria in 2012 and he is a PhD student
from the year 2013 in Constantine 2 University of Constantine, Algeria. His
current research interests include bio-inspired methods and their application to
solve optimisation problems.

Abdesslem Layeb is an Associate Professor in the Department of Fundamental
Computer Science and its Applications at the Constantine 2 University,
Algeria. He is a member of MISC Laboratory. He received his PhD in
Computer Science from the University Constantine 2, Algeria. He is interested
in discrete mathematics and combinatorial optimisation, with an emphasis on
algorithms for vehicle routing, packing and scheduling problems.

 38 B. Bensedira et al.

Zineb Habbas was awarded a degree from USTHB University of Algiers in
1979. She received her Master degree in Computer Science from the same
university in 1984 and PhD in Computer Science from INPG in France in 1992.
In 2003, she received her HDR which is the authorisation to supervise research.
Since 1993, she has been teaching computer science at the University of Metz.
Her research area includes parallel algorithmic models and constraint
satisfaction problems.

1 Introduction

The aim of arc routing problem (ARP) is to find routes including a subset of edges that
minimise a given cost. The ARP can be with or without constraints. One of the well-
known variants of ARP is the CARP. The CARP consists of vehicles set, which must
satisfy the clients’ demands spread on edges. These can be a service, a supply or a
collection measured with the capacity of each edge. CARP occurs frequently in many
manufacturing and industrial services. Many of the applications are related to network
roads, for instance mail delivery, waste and milk collection, water readings, electricity
meters and others (Dror, 2000). Despite the importance of CARP in many real
applications, the practical ones remain less widespread because it has many variants and
each manufacturing or service industrial has its variant. Moreover, the CARP is known to
be NP-hard (Golden and Wong, 1981), even in the case of single-vehicle called rural
postman problem (RPP). Since exact methods are still limited to 190 edges (Bartolini,
Cordeau and Laporte, 2013), heuristics and meta-heuristics are required for solving large
instances. Heuristic methods include augment-merge (Golden and Wong, 1981), path
scanning (Golden, DeArmon and Baker, 1983), construct-and-strike (Pearn, 1989),
augment-insert (Pearn, 1991), Ulusoy’s (1985) tour splitting algorithm and the route-first
cluster-second heuristic (Stern and Dror, 1979).

Meta-heuristic algorithms have become the good compromise for many problems,
which have big instances. Meta-heuristics are used for solving NP-hard problems because
they have proved their potential and effectiveness in many problems. Furthermore, the
meta-heuristics are general algorithms characterised by the flexibility and simplicity
allowing their use to solve many problems by either extension or hybridisation. In the
other hand, they can be adapted easily or combined with other methods to solve many
real-world optimisation problems from the fields of operations research and engineering
of artificial intelligence. The solution found by the meta-heuristic is not always the best,
but it has a good quality and available in a reasonable time (Nesmachnow, 2014; Talbi,
2009).

Several approaches based on meta-heuristics were developed to solve CARP and its
variants for finding a solution with effectiveness, quality and reasonable time. Beullens
et al. (2003) developed a guided local search (GLS). Instead of evaluating
neighbourhoods set of a given solution, GLS evaluates only a subset of edges based on
the information marked for each edge in the previous search procedure. As a standard
meta-heuristic, genetic algorithm was applied to an extended version of CARP
(Lacomme, Prins and Ramdane-Cherif, 2004). In their work, a memetic algorithm (MA)

 Discrete cuckoo search 39

is proposed which combines genetic algorithm with local search. The chromosome is
encoded as a sequence of required edges and used in Ulusoy’s heuristic to get CARP
solution. MA was tested on instances with up to 190 edges and 140 vertices. Based on
vehicle routing problem (VRP) contributions, some studies were devoted to transform
CARP to VRP (Longo, Aragão and Uchoa, 2006).

As real application of CARP, the salting route problem was solved using evolutionary
algorithm (EA) (Handa et al., 2006). EA uses the same encoding of MA but any of
heuristics is used to obtain the solution. Polacek et al. (2008) proposed a variable
neighbourhood search (VNS). In this work, the neighbourhood operator is applied on
sequences of required edges. VNS uses Ulusoy’s algorithm to find all the trips. Brandão
and Eglese (2008) proposed an adapted Tabu search algorithm (TSA) to solve CARP.
TSA employs five heuristics to generate initial solutions. According to the used
heuristics, two versions of TSA have been applied (TSA1 and TSA2). The first version
uses only path scanning heuristic. However, the second version uses five heuristics.
Another application of Tabu search with global repair operator is presented in Mei, Tang
and Yao (2009). Contrary to TSA, the individual scheme is a sequence of vertices
separated with the depot vertex. Furthermore, a solution can be infeasible. Another MA
with extended neighbourhood search for CARP (MAENS) was proposed by the same
authors in Tang, Mei and Yao (2009). They have employed a novel local search operator
called merge-split. This later aims to modify a part of solution. At least, two routes are
merged and the unordered list of required edges is used to reconstitute other routes.

Ant colony optimisation (ACO) is another popular meta-heuristic for tackling the
CARP, ACO was proposed in Santos, Coutinho-Rodrigues and Current (2010). In this
work, the initial population is generated with different approaches and the local search is
based on 12 move operators. Usberti, Paulo and André (2013) have tackled the CARP
using GRASP with path re-linking. This approach contains construction and local search
phases. In the construction phase, the solutions are generated using a greedy randomised
heuristic. The local search phase improves the initial solutions using four move operators.
Recently, a hybrid meta-heuristic approach (HMA) developed by Chen, Hao and Glover
(2016). HMA initialises the population with path scanning heuristic and improves the
solution using six move operators before introducing the main phase. Compared with
other MAs, HMA uses a novel crossover operator and a local search. For more details on
real applications of CARP, we recommend the recent state of art in the book of Corberan
and Laporte (2015).

The aim of this paper is the implementation of a new approach based on cuckoo
search (CS) algorithm. The discretisation of the CS algorithm is required to solve the
CARP. That is why we propose a discretisation of CS algorithm and the implementation
of different steps according to this one. The use of Lévy flight function has a great role in
the diversification and convergence to the optimal solution. The remainder of this paper
is organised as follows: Section 2 presents the CARP formulation. An overview of the CS
algorithm is presented in Section 3. In Section 4, the proposed approach is described.
Experimental results are discussed in Section 5, and a conclusion is provided in
Section 6.

 40 B. Bensedira et al.

2 Capacitated arc routing problem

2.1 Intuitive presentation

Like VRP, CARP is a widespread problem in combinatorial optimisation domain. In
general, the CARP problems aim to determine the optimal set of rounds crossed by a fleet
of vehicles to serve a set of customers spread on a given network (Golden and Wong,
1981). In CARP, each arc or edge has a demand and two different costs: a routing cost
and a serve cost. Most formulations of CARP problems neglect the cost of service. The
basic variant of CARP is the RPP. In a RPP problem, a single vehicle, assumed to have
unlimited capacity and serves all the arcs or edges in the network. The RPP is a
generalisation of travel salesman problem (TSP) where the customers are the edges or
arcs in the network. CARP is considered as a generalisation of RPP where we have a set
of vehicles with limited capacity. By default, the vehicles have the same capacity.

Informally, CARP solution is feasible, if and only if:

• Each tour starts and ends in the one deposit of the network.

• Each required edge (which has a strictly positive demand) is served on one vehicle.

• The sum of demands collected or granted by each vehicle should not exceed its own
capacity.

2.2 Mathematical formulation

Mathematically, several formulations have been proposed to model the CARP problem.
Let us consider a graph G = (V, E), where V is a set of nodes and E is a set of edges, and
K vehicles. Each edge e = (vi, vj) ∈E of G is presented with two arcs e1 = (vi, vj) and
e2 = (vj, vi). e1 and e2 take the cost and request of e. Two sets of binary variables are used
in this formulation: xp

ij (respectively lp
ij) equals 1 if the vehicle p passes by (respectively

serves) the arc (vi, vj) and equals 0 otherwise. The problem consists in minimising the
following quantity:

()ij ji
1

Min
K

p p
e

p e E

x x w
= ∈

+∑∑ (1)

()() ()()i i i , 1 , , p px v x v v V p Kδ δ+ − ∀ ∈= = … … (2)

() { }ij ji i j r
1

 1 ,
K

p p

p

l l e v v E
=

+ = ∀ = ∈∑ (3)

{ }ij ij i j r , , 1, .p px l e v v E p K≥ ∀ = ∈ = … (4)

 Discrete cuckoo search 41

{ }
()

i j r

ij ji
 ,

 1 , , p p
e

e v v E

d l l Q p K
=

+ ≤ ∀ =∑ … …
ε

 (5)

()() { } () { }ij ji i j 1 , , 1, ., \ p p px S x x e v v E S p K S V vδ + ≥ + ∀ = ∈ = … ∀ ⊆ (6)

{ } { }ij ji ij ji i j r , , , 0,1 , , 1, .p p p px x l l e v v E p K∈ ∀ = ∈ = … (7)

The objective function represents the sum of routing and service costs of all edges or
arcs. The first constraint (Eq. 2) ensures that each node v1 having an entry δ+(vi) must
have an output δ−(vi) which allows vehicles to leave a node once they return to it. The
second constraint ensures that each edge is served exactly once by one vehicle (Eq. 3).
Equation (4) ensures that the vehicle can traverses the required edge more than once
before he serves it. The capacity constraint is presented by inequality (Eq. 5) and the
graph connectivity is ensured by constraint in (Eq. 6). Originally, this formulation was
provided by Golden and Wong (1981) and then improved by Welz (1994). There are
other formulations that improve this formulation in terms of variables number or the
integration of other constraints concerning other variants of CARP (Dror, 2000).

The search for a solution needs many steps starting from the construction of the order
of the required edges and the way of edges assignment to vehicles. The solution is not
feasible where an edge cannot be assigned to a vehicle (the capacity constraint) or it is
impossible for a vehicle to move from one edge to another. Most industrial problems
formulated by CARP have large instances, which increases the required computation
exponentially depending on the size of problem. Therefore, it is better to find other
techniques to deal with these problems. In this paper, we are interested in applying CS
algorithm to tackle this problem.

3 Cuckoo search

Until now, several complex problems stay without optimal solutions. Indeed, the
computation complexity of the exact methods increases exponentially with the size of
those problems. That is why meta-heuristic algorithms are considered to be the best way
for solving many difficult problems (Gandomi, Yang and Alavi, 2011). The majority of
these algorithms have been inspired by the natural systems such as physical, biology, etc.
Yang and Deb (2009) developed a bio-inspired algorithm namely CS which is based
on the behaviour of cuckoo. cuckoos use an aggressive strategy of reproduction that
involves the female hacks nests of other birds to lay their eggs. Sometimes, the egg of
cuckoo in the nest is discovered and the hacked birds discard or abandon the nest and
start their own brood elsewhere. CS is based on the following three rules:

 42 B. Bensedira et al.

• Each cuckoo lays one egg at a time, and put it in a randomly chosen nest.

• The best nests with high quality of eggs (solutions) will carry over to the next
generations.

• The number of available host nests is fixed, and a host can discover an alien egg with
a probability pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or
abandon the nest to build a completely new nest in a new location.

Concerning the first assumption, according to the problem, we can suppose that each
cuckoo lays and put several eggs at a time. CS algorithm is presented in the pseudo-code
as shown in Figure 1.

Figure 1 Cuckoo search

Cuckoo search algorithm is characterised by its simplicity because it uses few
parameters. The original version of CS operates in continuous search space. In the
standard CS algorithm, the new generation of cuckoos is based on Lévy flights (Eq. 8)
named by the French mathematician Paul Lévy, representing a model of random walks
characterised by step length, which obeys to the probability distribution. Lévy flight is
used to model many transitions in the states of many phenomena physical, chemical,
organic and natural in reality.

() () ()1 Levy , t t
i ix x sα λ+ = + ⊕ (8)

() ()Levy , ~ , 1 3s s λλ λ− < ≤ (9)

where ()1t
ix + and ()t

ix represent the solution i at time t and t + 1, respectively. α > 0 is the

step size, which should be related to the scales of the problem of interests. Generally, α

 Discrete cuckoo search 43

takes the value of 1. The product ⊕ means entry-wise multiplications. This entry-wise
product is similar to those used in PSO, but here the random walk via Lévy flights is
more efficient in exploring the search space as its step length is much longer in the long
run.

Compared to results of several meta-heuristic algorithms such as PSO and GA (Yang
and Deb, 2009), CS algorithm was applied for many optimisation problems and has
shown an encouraging efficiency. CS algorithm has contributed for solving a lot of
continuous problems and gives effective results. Unfortunately, the original CS algorithm
allows only the resolution of many problems where the solution representation is based
on continuous coordinates. Recently, some studies are proposed to solve some discrete
problems using CS algorithm, for example, the travelling salesman problem (TSP)
(Ouaarab, Ahiod and Yang, 2014) and job shop scheduling problem (Ouaarab, Ahiod and
Yang, 2015). The adaptation of CS algorithm for solving CARP problems is detailed in
the next section.

4 Discrete cuckoo search for CARP

4.1 CARP solution representation

Cuckoo search algorithm was designed for continuous optimisation problems; therefore, it
cannot be adopted directly to CARP problem. Basic CS solution is used to get the
permutation of required edges. For that, we have used the smallest position value method
(Tasgetiren et al., 2006) which sorts the indexes according to the ascending order of CS
solution (Figure 2). The sorted CS solution becomes CARP solution with implicit paths
between two consecutive required edges. Finally, the shortest path is computed with
Dijkstra algorithm.

Figure 2 An example of SPV method

Two steps are used to construct the CARP solution. The first step assigns the required
edges to vehicles using FIFO method (First In First Out). In the second step, the required
edges and the depot vertex are connected with shorted paths. For the sake of clarity,
Table 1 contains an instance of CARP.

 44 B. Bensedira et al.

Table 1 CARP instance

Required edges 1 2 3 4 5
Requests 2 4 3 4 3

Figure 3 shows an example of CARP solution based on the CS solution in Figure 2 and
the parameters of CARP instance in Table 1. The capacity of vehicles is 10. The required
edges are in boldface. Dashed lines indicate shortest deadheading paths. With R required
edges, the solution can be computed in O(2R). The passage on edges is established under
the order in CS solution. Note that an infeasible solution can exist when FIFO method
assigns only a sub-ensemble of required edges. In this case, we affect a penalty cost to
this solution.

Figure 3 An example of CARP solution with 2 vehicles

4.2 Discrete cuckoo search algorithm

After each iteration of the discrete cuckoo search for CARP (DCSARP) algorithm, each
cuckoo creates a solution. The solution represents a sequence of the required edges. To
build a CARP solution, we add a decoding mechanism that uses Dijkstra algorithm to
find the routes between each pair of edges. Figure 4 gives the flowchart of the proposed
DCSARP. It should be noted that the proposed algorithm can be extended to deal with a
large number of discrete combinatorial problems. The discrete cuckoo search algorithm is
presented as follows:

 Discrete cuckoo search 45

Figure 4 Flowchart of the DCSARP algorithm

The first step in this algorithm is initialising the parameters. The main advantage of the
DCSARP algorithm is that there are fewer parameters to be set compared to other
population-based algorithms. There are essentially three main parameters to initialise; the
population size N, the number of vehicles V and the required edges R. the size of nest
(egg) is equal to R. In the second step, a swarm of N nests are created and initialised to
generate some possible CARP solutions. Like any population-based algorithm, it is
recommended to use some heuristics to get a diverse population containing both good
and bad nests. Moreover, a distance matrix is created and initialised using costs vector D
in the purpose of reducing the time convergence. The algorithm progresses through
several generations according to the CS dynamics (Figure 5). During each iteration, a
new cuckoo is built. The next step is the evaluation of the current cuckoo. For that, we
apply a discretisation function to get the required edges sequence. This last is divided
between vehicles using assignment function.

 46 B. Bensedira et al.

Figure 5 Discrete Cuckoo Search algorithm for CARP problem

4.3 Moving in the search space

To maintain the exploration of search space, CS uses lévy flight function which models
random walks. The use of levy flight in discrete search space increases the intensification
and therefore finding the best solution is delicate. That is why DCSARP associates with
lévy flight other moves. The first move is insertion and the second is swap. According to
the value of lévy flight, the corresponded move is carried. In insertion move, a candidate
edge (only required edges) is removed from its current position and inserted in a
randomly position (except the current position). The swap move is similar, two required
edges are selected and a permutation is made. Figure 6a and b illustrates the lévy flight
moving applied on example of Figure 3 using insertion and swap move, respectively.

 Discrete cuckoo search 47

Figure 6 Lévy flight moving

5 Experimental results and discussion

The proposed DCSARP algorithm is implemented in Java using NetBeans IDE 8.0.2
under the 64 bits Seven Operating System. Experiments are concluded on laptop with
configuration of Intel(R) CoreTM I3 2.20 GHz, and 4 GB of RAM. We tested the
performance of DCSARP on 63 instances of three standard test data sets for CARP. All
the edges are required in these networks and the capacities of vehicles are equal:

• kshs: This data set was introduced in Kiuchi et al. (1995). It includes six undirected
networks ranging from 6 to 10 nodes and 15 edges.

• gdb: It was proposed by Golden, DeArmon and Baker (1983) to evaluate a
capacitated version of Chinese Postman Problem. This set contains 23 undirected
networks ranging from 7 to 27 nodes and from 11 to 55 edges.

• val: Benavent et al. (1992) proposed data set which includes 34 undirected networks
ranging from 24 to 50 nodes and from 34 to 97 edges.

 48 B. Bensedira et al.

The data sets are downloaded from http://logistik.bwl.uni−mainz.de/benchmarks.php.
Table 2 summarises the parameter values of DCSARP algorithm which give the best
results about both of kshs, gdb and val instances. We set different parameters based on
parametric studies of pa, individuals and iterations number. In combinatorial problems,
the lower and upper bounds have no influence on the results improvement. In the first
(respectively second) study, all the parameters have been fixed except individual’s
number (respectively iterations) which is variable in each run. The third study is based on
pa. The pa has been setted at each run. In addition, the parameter pa is randomly setted at
each iteration.

Table 2 Parameters setting

Parameter Value
Population size 30
Solution size Number of required edges
Number of iterations 200000
Bad solution probability (Pa) 0.2
Lower bound (LB) 0
Upper bound (UB) 1

To ensure the DCSARP performance and to prove its abilities in solving ARPs, this
section compares the proposed algorithm to several CARP solver algorithms. The results
reported in Tables 3–5. All the tables list the name of instance and the corresponding
characteristics as number of vertices |V|, required edges |E|, lower bound (Best known),
and the best known given by our contribution and other works. In addition, the results are
highlighted in bold for the instance on which DCSARP achieved the best solution among
the compared methods. Following the recent practice in literature, we compare our
DCSARP with four population-based algorithms (MAENS; Tang, Mei and Yao, 2009,
ACO; Santos, Coutinho-Rodrigues and Current, 2010, GRASP; Usberti, Paulo and
André, 2013 and HMA; Chen, Hao and Glover, 2016) and one local search algorithm
(TSA; Brandão and Eglese, 2008):

• GA: reports the best results on gdb, val, egl.

• MAENS: reports the best results on gdb, val, egl, C-F obtained from 30 runs.

• ACO: reports the best results on gdb, val, egl, C-F obtained from 10 runs.

• GRASP: reports the best results on gdb, val, egl obtained from 15 runs.

• HMA: reports the best results on gdb, val, egl, C-F obtained from 30 runs. Two
versions proposed are HMA1 and HMA2. We chose the second version for
comparison which gave the best results.

• TSA: reports the best results on gdb, val, egl, C-G obtained from one run. Two
versions proposed are TSA1 and TSA2. We chose the second version for comparison
which gave the best results.

 Discrete cuckoo search 49

Table 3 Results for kshs instances

File |V| |E| Best GLS BCPA DCSARP
Kshs1 4 15 14661 14661 14661 14661
Kshs2 4 15 9863 9863 9863 9863
Kshs3 4 15 9320 9320 9320 9320
Kshs4 4 15 11498 11498 11498 11498
Kshs5 3 15 10957 10957 10957 10957
Kshs6 3 15 10197 10197 10197 10197

Table 4 Results for gdb instances

File |V| |E| Best GA TSA2 GRASP ACO MAENS HMA2 DCSARP
gdb1 12 22 316 316 316 316 316 316 316 316
gdb2 12 26 339 339 339 339 339 339 339 339
gdb3 12 22 275 275 275 275 275 275 275 275
gdb4 11 19 287 287 287 287 287 287 287 287
gdb5 13 26 377 377 377 377 377 377 377 377
gdb6 12 22 298 298 298 298 298 298 298 298
gdb7 12 22 325 325 325 325 325 325 325 325
gdb8 27 46 348 348 352 348 348 348 348 350
gdb9 27 51 303 303 317 303 303 303 303 308
gdb10 12 25 275 275 275 275 275 275 275 275
gdb11 22 45 395 395 395 395 395 395 395 395
gdb12 13 23 456 458 458 458 458 458 458 458
gdb13 10 28 536 538 540 536 536 536 536 544
gdb14 7 21 100 100 100 100 100 100 100 100
gdb15 7 21 58 58 58 58 58 58 58 58
gdb16 8 28 127 127 127 127 127 127 127 127
gdb17 8 28 91 91 91 91 91 91 91 91
gdb18 9 36 164 164 164 164 164 164 164 164
gdb19 8 11 55 55 55 55 55 55 55 55
gdb20 11 22 121 121 121 121 121 121 121 121
gdb21 11 23 156 156 156 156 156 156 156 156
gdb22 11 44 200 200 200 200 200 200 200 200
gdb23 11 55 233 235 235 233 235 233 235 233

 50 B. Bensedira et al.

Table 5 Results for val instances

File |V| |E| Best GA TSA2 GRASP ACO MAENS HMA2 DCSARP
1A 24 39 173 173 173 173 173 173 173 173
1B 24 39 173 173 173 173 173 173 173 173
1C 24 39 245 245 245 245 245 245 245 249
2A 24 34 227 227 227 227 227 227 227 227
2B 24 34 259 259 260 259 259 259 259 259
2C 24 34 457 457 457 457 457 457 457 457
3A 24 35 81 81 81 81 81 81 81 81
3B 24 35 87 87 87 87 87 87 87 87
3C 24 35 138 138 138 138 138 138 138 138
4A 41 69 400 400 400 400 400 400 400 400
4B 41 69 412 412 412 412 412 412 412 414
4C 41 69 428 430 430 430 430 430 428 448
4D 41 69 530 530 546 530 530 530 530 555
5A 34 65 423 423 423 423 423 423 423 428
5B 34 65 446 446 446 446 446 446 446 452
5C 34 65 474 474 474 474 474 474 474 476
5D 34 65 575 581 583 581 577 577 575 636
6A 31 50 223 223 223 223 223 223 223 223
6B 31 65 233 233 241 233 233 233 233 233
6C 31 50 317 317 317 317 317 317 317 332
7A 40 66 279 279 279 279 279 279 279 288
7B 40 66 283 283 283 283 283 283 283 307
7C 40 66 334 334 334 334 334 334 334 356
8A 30 63 386 386 386 386 386 386 386 405
8B 30 63 395 395 395 395 395 395 395 426
8C 30 63 521 527 529 522 521 521 521 595
9A 50 92 323 323 323 323 323 323 323 340
9B 50 92 326 326 326 326 326 326 326 342
9C 50 92 332 332 332 332 332 332 332 355
9D 50 92 389 391 399 391 391 391 389 454
10A 50 97 428 428 428 428 428 428 428 438
10B 50 97 436 436 436 436 436 436 436 465
10C 50 97 446 446 451 446 446 446 446 477
10D 50 97 528 528 530 527 526 531 525 588

 Discrete cuckoo search 51

Note that the previous works did not report the kshs results so we chose a local search
algorithm (GLS; Beullens et al., 2003) and Branch-and-cut-and-price algorithm (BCPA;
Longo, Aragão and Uchoa, 2006).

• GLS: reports the best results on kshs, gdb, val obtained from one run.

• BCPA: reports the best results on kshs, gdb, val, egl.

These reference algorithms were tested on different computers, compilers and operating
systems. Hence, a fair comparison cannot be made. The comparison is based on a
solution quality. In terms of time, the DCSARP is much more time-consuming than all
the compared algorithms.

As it can be seen from Table 3 and Figure 7, the results obtained by DCSARP and
other algorithms (GLS and BCPA) in six instances of kshs are identical to the best
solutions. Indeed, the Friedman test shows that our algorithm is competitive.

Figure 7 Freidman test for kshs instances (see online version for colours)

 52 B. Bensedira et al.

Table 4 and Figure 8 show the comparison for 23 gdb instances. As it can be seen,
DCSARP produces better results in 20 instances. We have only three instances with
results under the best known (gdb8, gdb9, gdb13). The Friedman test shows that there is
no significant difference between our algorithm results and the best-known ones.

Figure 8 Freidman test for gdb instances

Table 5 and Figure 9 show the comparison for val instances. As we can see, our approach
finds only 11 best known out of 34 instances.

Figure 9 Freidman test for val instances

 Discrete cuckoo search 53

6 Conclusion

The work contribution resides on the use of CS algorithm to solve the capacitated arc
routing problem (CARP), and the mechanism of discretisation of continuous solution. The
proposed algorithm called DCSARP provides an effective way to generate CARP
solutions. DCSARP moves from one solution to another new one in discrete space using
a sequence of integers based on lévy flight, and a decoding mechanism to transform the
sequence of integers to CARP solution. The lévy flight function was adapted to maintain
the moving in search space. Hence, two move operators (insertion and swap) are
associated to lévy flight function. DCSARP is capable of achieving better solutions in
gdb and kshs instances. Unfortunately, it did not succeed to get better solutions in large
instances as val instances. Although DCSARP has shown excellent diversification in our
experimental studies, the stagnation and high computational cost present its
disadvantages. They remain to address in future works. As perspective, we can include a
heuristic to maintain the convergence of DCSARP.

References
Bartolini, E., Cordeau, J.F. and Laporte, G. (2013) ‘Improved lower bounds and exact algorithm for

the capacitated arc routing problem’, Mathematical Programming, Vol. 137, Nos. 1–2,
pp.409–452.

Benavent, E., Campos, V., Corberan, E. and Mota, E. (1992) ‘The capacitated arc routing problem:
lower bounds’, Networks, Vol. 22, No. 4, pp.669–690.

Beullens, P., Muyldermans, L., Cattrysse, D. and Van Oudheusden, D. (2003) ‘A guided local
search heuristic for the capacitated arc routing problem’, European Journal of Operations
Research, Vol. 147, No. 3, pp.629–643.

Brandão, J. and Eglese, R. (2008) ‘A deterministic Tabu search algorithm for the capacitated arc
routing problem’, Computers & Operations Research, Vol. 35, No. 4, pp.1112–1126.

Chen, Y., Hao, J.K. and Glover, F. (2016) ‘A hybrid metaheuristic approach for the capacitated arc
routing problem’, European Journal of Operational Research, Vol. 253, pp.25–39.

Corberan, A. and Laporte, G. (2015) Arc Routing: Problems, Methods, and Applications, MOS-
SIAM series on optimization: 20, SIAM.

Dror, M. (2000) Arc Routing: Theory, Solutions and Applications, Kluwer Academic Publishers,
Boston, USA.

Gandomi, A.H., Yang, X.S. and Alavi, A.H. (2011) ‘Mixed variable structural optimization using
firefly algorithm’, Computers & Structures, Vol. 89, Nos. 23–24, pp.2325–2336.

Golden, B.L., DeArmon, J.S. and Baker, E.K. (1983) ‘Computational experiments with algorithms
for a class of routing problems’, Computers & Operations Research, Vol. 10, No. 1, pp.47–59.

Golden, B.L. and Wong, R.T. (1981) ‘Capacitated arc routing problems’, Networks, Vol. 11, No. 3,
pp.305–315.

Handa, H., Lin, D., Chapman, L. and Yao, X. (2006) ‘Robust solution of salting route optimisation
using evolutionary algorithms’, Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada,
pp.3098–3105.

Kiuchi, M., Shinano, Y., Hirabayashi, R. and Saruwatari, Y. (1995) ‘An exact algorithm for the
Capacitated Arc Routing Problem using Parallel Branch and Bound method’, Abstracts of the
1995 Spring National Conference of the Oper. Res. Soc. of Japan, 28–29.

 54 B. Bensedira et al.

Lacomme, P., Prins, C. and Ramdane-Cherif, W. (2004) ‘Competitive memetic algorithms for arc
routing problems’, Annals of Operations Research, Vol. 131, No. 1–4, pp.159–185.

Longo, H., Aragão, M.P. and Uchoa, E. (2006) ‘Solving capacitated arc routing problems using a
transformation to the CVRP’, Computers & Operations Research, Vol. 33, No. 6,
pp.1823–1837.

Mei, Y., Tang, K. and Yao, X. (2009) ‘A global repair operator for capacitated arc routing
problem’, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
Vol. 39, No. 3, pp.723–734.

Nesmachnow, S. (2014) ‘An overview of metaheuristics: accurate and efficient methods for
optimisation’, International Journal of Metaheuristics, Vol. 3, No. 4, pp.320–347.

Ouaarab, A., Ahiod, B. and Yang, X. S. (2014) ‘Discrete cuckoo search algorithm for the travelling
salesman problem’, Neural Computing & Applications, Vol. 24, pp.1659–1669.

Ouaarab, A., Ahiod, B. and Yang, X.S. (2015) ‘Cuckoo search applied to job shop scheduling
problem’, Recent Advances in Swarm Intelligence and Evolutionary Computation, Studies in
Computational Intelligence, Vol. 585, pp.121–137.

Pearn, W.L. (1989) ‘Approximate solutions for the capacitated arc routing problem’, Computers
and Operations Research, Vol. 16, No. 6, pp.589–600.

Pearn, W.L. (1991) ‘Augment-insert algorithms for the capacitated arc routing problem’,
Computers and Operations Research, Vol. 18, No. 2, pp.189–198.

Polacek, M., Doerner, K.F., Hartl, R.F. and Maniezzo, V. (2008) ‘A variable neighborhood search
for the capacitated arc routing problem with intermediate facilities’, Journal of Heuristics,
Vol. 14, No. 5, pp.405–423.

Santos, L., Coutinho-Rodrigues, J. and Current, J.R. (2010) ‘An improved ant colony optimization
based algorithm for the capacitated arc routing problem’, Transportation Research Part B:
Methodological, Vol. 44, No. 2, pp.246–266.

Stern, H.I. and Dror, M. (1979) ‘Routing electric meter readers’, Computers & Operations
Research, Vol. 6, No. 4, pp.209–223.

Talbi, E.L. (2009) Metaheuristics: From Design to Implementation, John Wiley & Sons, Inc.
Publication, New York, USA.

Tang, K., Mei, Y. and Yao, X. (2009) ‘Memetic algorithm with extended neighborhood search for
capacitated arc routing problems’, IEEE Transactions on Evolutionary Computation, Vol. 13,
No. 5, pp.1151–1166.

Tasgetiren, M.F., Liang, Y.C., Sevkli, M. and Gencyilmaz, G. (2006) ‘Particle swarm optimization
and differential evolution for the single machine total weighted tardiness problem’,
International Journal of Production Research, Vol. 44, No. 22, pp.4737–4754.

Ulusoy, G. (1985) ‘The fleet size and mix problem for capacitated arc routing’, European Journal
of Operational Research, Vol. 22, No. 3, pp.329–337.

Usberti, F.L., Paulo, M.F. and André, L.M.F. (2013) ‘GRASP with evolutionary path relinking for
the capacitated arc routing problem’, Computers & Operations Research, Vol. 40, No. 12,
pp.3206–3217.

Welz, S.A. (1994) Optimal Solutions for the Capacitated Arc Routing Problem Using Integer
Programming, PhD Thesis, Department of QT and OM, University of Cincinnati.

Yang, X.S. and Deb, S. (2009) ‘Cuckoo search via lévy flights’, Proc of World Congress on Nature
& Biologically Inspired Computing (NaBIC), India.

