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Abstract: Bat algorithm (BA) has been widely used to solve the diverse kinds of optimisation
problems. In accordance with the optimisation problems, balance between the two major
components: exploitation and exploration, plays a significant role in meta-heuristic algorithms.
Several researchers have worked on the performance for the improvement of these algorithms.
BA faces one of the major issues in high dimensions. In our work, we proposed a new variant
of BA by introducing the torus walk (TW-BA) to solve this issue. To improve the local search
capability instead of using the standard uniform walk, torus walk is incorporated in this paper.
The simulation results performed on 19 standard benchmark functions depicts the efficiency and
effectiveness of TW-BA compared with the traditional BA, directional bat algorithm, particle
swarm optimisation, cuckoo search, harmony search algorithm, differential evolution and genetic
algorithm. The promising experimental result suggests the superiority of proposed technique.
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1 Introduction

The processes of optimisation involve vector space
modelling and searching of the optimal solution for an
addressed problem. All feasible advantages are recognised
as an acceptable solution, while unusual output considered
as an optimal solution. Optimisation is a method to achieve
an optimum explication by performing specific objective
functions (Yılmaz et al., 2014). Usually, optimisation
processes are employed to sort out the local and global
search optimisation problems (Gandomi et al., 2013).

Nature inspired swarm intelligence (SI)-based
optimisation methods have been employed for several years
for handling real-world complex problems. Beni and Wang
(1993) introduced the term SI motivated by the behaviour
of fish, insects, and birds as well as their independent skills
to manage the multifaceted variety of problems. Every
single individual cooperates with each other to perform
complex tasks (Cui et al., 2018a).

In the optimisation process, discrete solutions are
produced by using the stochastic algorithms, which
do not use gradient and take an initial configuration
identical. Although, the algorithm’s variables does not
affect the minor modifications but provide the best optimal
solutions (Runarsson and Yao, 2000). A sub type of
meta-heuristic family is population-based algorithms called
swarm algorithms that are employed to analyse the common
behaviour of swarms (Gandomi et al., 2013).

BA also, belongs to swarm meta-heuristic family,
proposed by Yang (2010). This algorithm is simulated
with the characteristics of bats called echolocation.
Although, bats also have an ability to distinguish each
kind of insects that cross their way during hunting
process in the darkness. BA has carried out in several
artificial intelligence (AI) applications like feature selection,
engineering design, image processing, natural language
processing, text classification, clustering, malware variants
detection (Cui et al., 2018b) and many more.

A searching ability of an algorithm is affected by the
two most critical ingredients: exploration and exploitation
(Cui et al., 2018a). Exploration has an ability to bring out
the solutions from area where they stuck in an algorithm.
The best solution is founded by examining the different
unknown areas with the help of an algorithm having
exploration ability. In literature, many researchers suggest
that exploration should be carried out first in order to scan
the whole area of search space. However, exploitation has
an ability to expand the algorithm’s convergence speed
and exploitation comes for enhancing the solutions that are
taken with the help of exploration (Bangyal et al., 2018a).
The balance between exploitation and exploration ability of
population-based algorithms may tend to highly increase the
performance (Bangyal et al., 2018a).

The major problem with BA and other swarm-based
evolutionary algorithms is a convergence of swarm (Cai
et al., 2016). Before obtaining a global best solution,
BA may converge prematurely and due to this premature
behaviour, BA becomes stabbed into the local minima.
Researchers have tackled this problem by proposing the

improved techniques to resolve local optima problem (Kora
and Kalva, 2015). In case of BA, the targeted parameters to
handle local minima problem is: swarm size, velocity, pulse
rate, loudness and frequency (Meng et al., 2015).

Different optimisation methods including gene
expression programming (GEP), differential evolution (DE),
evolutionary algorithms (EAs), genetic programming (GP),
particle swarm optimisation (PSO) and genetic algorithm
(GA) also faced premature convergence problem (Eberhart
and Shi, 1998). PSO performs better than GA in terms of
exploration, reported by Kennedy and Eberhart (1995).

In this study, we have carried out two major
modifications in standard BA and proposed new version
of BA called TW-BA. The first modification is the use
of chaotic random inertia weight for updating the velocity
and in second modification, we employed torus walk
(TW-BA) to improve exploitation capability of BA. The
proposed TW-BA is compared with Standard BA, dBA
(Chakri et al., 2017), PSO (Kennedy and Eberhart, 1995),
CS (Yang and Deb, 2009), HS (Geem et al., 2001), DE
(Das and Suganthan, 2011) and GA (Davis, 1991). The
experimental results proved the superiority of TW-BA over
other variants.

The article has been divided into different sections as:
Section 2 contains the related work. In Section 3 the
working of standard BA is elaborated. Methodology is
discussed in Section 4. In Section 5 experimental setup and
their characteristics are presented. Results and discussion is
shown in Section 6. Section 7 describes the conclusion.

2 Related work

The local search ability of BA is better than the global
search ability, however, the basic scale to measure
the performance of evolutionary algorithms is highly
dependable on the balance between local search and global
search ability. In order to improve the exploitation and
exploration ability, several researchers have proposed novel
variants of BA (Bangyal et al., 2018a).

Multiobjective bat algorithm (MOBA) has been
introduced (Yang, 2011) to sort out multi-objective
optimisation. A novel mutation operator is carried out
in Wang and Guo (2013) named as the robust hybrid
optimisation (HS/BA) in order to improve the convergence
rate.

Fister et al. (2013) hybridised BA with differential
evolution (DE) to generate the new population-based BA
variant called HBA that gives the more optimal global
solution. In Mirjalili et al. (2014), binary bat algorithm
(BBA) is used to handle binary optimisation problems.

BA based on opposition learning (OBA) is suggested
by Saha et al. (2013) for solving infinite impulse response
(IIR) classification problem. Yilmaz and Kucuksille (2013)
carried out three basic modifications in BA named as IBA
to cover the drawbacks of standard BA. IBA includes the
modification of local search by improving the exploitation
and exploration capabilities of bats.
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A new variant of BA called modified bat algorithm
(MBA) proposed by Yılmaz et al. (2014). In MBA the
exploration process is modified by mutating the emission
rate and loudness of bats in the search space.

The updated version of BA is proposed in Fister et al.
(2014), described as hybrid self-adaptive bat algorithm
(HSABA). HSABA is composed of adaptive bat algorithm
(SABA) and DE. This unique method is executed as the
heuristic for exploitation ability. An improved version of
chaotic behaviour-based BA introduced in Abdel-Raouf
et al. (2014), termed as IBACH. Acoustic monopoly
incorporated along with chaotic distribution in order to
generate the bat solution. IBACH is useful for solving
integer programming problems.

BA with the Gaussian walk (BAGW) (Cai et al.,
2014) is one of the major contributions in the field
of optimisation. In BAGW the authors targeted the
high dimensionality of the multi-objective and nonlinear
problem. Chaotic BA is carried out by Gandomi and
Yang (2014), for implementing stable, obvious and balance
optimisation.

For increasing the population diversity a novel
complex-valued BA is presented by Li and Zhou (2014).
Kabir et al. (2014) proposed adaptive BA (NABA) to
increase the searching capability of BA in exploratory
features. NABA contains two mutation operators to
enhance the search strategy of BA. Furthermore, detailed
comparison of different BA mutation has been carried out
in Bangyal et al. (2018b).

Cloud model BA (CBA) is carried out (Zhou et al.,
2014) to improve the echolocation process of BA. CBA
follows the concept ‘Bats overtake their victim’. Moreover,
Levy fight mode and swarm learning information also
induced in CBA for better diversity and robust search
abilities. The authors added a new parameter in BA by
proposing the inertia weight factor (Cui et al., 2015) to
develop the strong exploitation abilities. Inertia weight is
employed to regulate the bat’s prior velocity.

The authors combined the Cauchy mutation operator
along with elite opposition-based learning behaviour to
the proposed new version of BA (Paiva et al., 2017).
This enhanced BA develops a controlled diversity of an
algorithm as well as high convergence speed.

3 Bat algorithm

BA is a population-based metaheuristic approach, inspired
by the echolocation rule of bats. Every single individual
called a bat denotes the candidate solution in the swarm.

The processes of bat echolocation involve the following
characteristic rules (Kabir et al., 2014):

• Distance: every individual used echolocation to
estimate the distance between their current position
and the estimated position of prey. Bats also send
omens to their surroundings to acknowledge their
food.

• Frequency: for each iteration t in dimension, d bats
move randomly with the velocity vtij and the position
xt
ij , where the frequency of bats f (t)

ij follows the
linear decreasing behaviour of wavelength λ. Bat
loudness is determined by A

(t)
ij .

• Loudness: loudness A(t)
ij diversifies from A0 to Am.

Where A0 is the maximum value and Amin is
minimum constant.

Algorithm 1 Standard bat algorithm
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For each bat, xt
ij population is initialised with random

distribution to adjust their initial positions in the dimension
d. In Algorithm 1, line 1 corresponds to the bat initialisation
where the primitive loop starts from line 1 to line 19. The
initial best solution in line 2, the current best solution is
determined from line 6 to 9 and the solution evaluation
in line 10. The process from generating the new solution
to retain global optimum is expressed by lines 11 to 19.
Following equation are applied to retain the new solution:

f
(t)
ij = fmin + (fmax − fmin).R̄ (1)

v
(t+1)
ij = vtij + (xt

ij − ¯Best)f t
ij (2)

x
(t+1)
ij = xt

ij + vtij (3)

where a Gaussian distribution is used to produce the random
numberR̄, The standard deviation and mean of numberR̄
are fixed to one and zero respectively. The frequency for
determining the change of the rate of velocity is as: f (t)

ij =

[fij
(t)
min, fij

(t)
max]. The current best solution is improved using

the following equation.

xijtnew = ¯Best+ εA
(t)
ij .N̄ (4)
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In the above equation A
(t)
ij recognised as the bat loudness

factor where ε referred as scaling factor helps in local
searching,N̄ representing random number following the
uniform distribution. Generally, the loudness of bats A

(t)
ij

leads to decline and the pulse rate rtij leads to raise when
the bats approximately near to their current best solution
(Wang et al., 2019). The equation for both factors loudness
and pulse rate are as:

At+1
ij = ᾱAt

ij (5)

rtij = r0ij [1− exp(−γt)] (6)

where ᾱ and γtare constant number generated using the
uniform distribution randomly. Algorithm 1 contains the
pseudo code of standard BA.

4 Methodology

Many researches implemented different strategies of inertia
weights to improve the performance of BA. Yang and Le
(2015) proposed time varying inertia weight in original BA
to balance the searching process of BA. Thus, this study
contains two major modifications in standard BA. Firstly,
we have carried out chaotic inertia weight (Feng et al.,
2007) in order to maintain the balance between local search
and global search ability of BA. Secondly, we modified
the random walk with torus walk in order to improve
the exploitation process. These two improvements chaotic
inertia and the torus walk together develop a new variant
of BA termed as modified bat algorithm with torus walk
(TW-BA).

4.1 The chaotic inertia weight

Chaotic inertia weight includes chaotic mapping to set
weights of inertia. In this study, we carried out a logistic
mapping for controlling the parameter of inertia weights.
The equation for logistic mapping is given below:

m = δm(1−m) (7)

where 3.57 < δ < 4, leads to the chaotic phenomena and
the interval [0, 1] is be-sprinkled by the chaotic result. The
combination [0, 0.1] and [0.9, 1] shows the times happening
very high. The maximum and mean time for the time
happening interval of [0.1, 0.9] is more than 1,500 and 200
respectively.

TW-BA contains chaotic random inertia weight; the
strategy for chaotic random inertia weight is given below:

Step 1 Chose a number m randomly over the interval of
(0, 1). Select a number R randomly in the
interval [0, 1].

Step 2 Calculate logistic mapping as:
m = 3.58m(1−m).

Step 3 Compute chaotic random inertia weight as (Feng
et al., 2007): wt

ij = 0.5R+ 0.5m.

The standard version of BA has no inertia weight, so we
altered the velocity equation v

(t+1)
ij of standard BA. Now the

following equation is used to update the velocity of bats.

v
(t+1)
ij = vtijw

t
ij + (xt

ij − ¯Best)f t
ij (8)

Algorithm 2 Proposed bat algorithm (TW-BA)
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Table 1 Parameter setting

Algorithm Parameters

BA Np = 40, rtij , [0, 1], A
t
ij , [0, 2]

PSO c1 = c2 = 1.49, w = linearly decreasing
TW-BA rtij , [0, 1], A

t
ij , [0, 2], L̄, [0, 1], T , (0, 1)

4.2 The torus walk

In the traditional BA, population adopted the random
walk during the search process of global minima. But
this random walk may lead to premature convergence as
particles searching food randomly without any specific
pattern. We replaced this random walk into a torus walk. In
the original BA, by (4) the local search only concentrates
the knowledge of their neighbours, so if neighbour’s bats
get stuck in local minima then the capability of local search
may useless. This inadequate exploitation is not supposed
to give the best optimal solution. We modified this random
walk by torus, which increases the local search capability to
handle the local minima problem. The local search equation
for TW-BA is given below:

xijtnew = ¯Best+ 1A
(t)
ij (L̄T (0, 1)(x

t
ij − iter ¯Best)) (9)

In the above equation, L̄ is referred as controlling
parameter, which controls the speed of each bat by
following linearly decreasing phenomena helps to improve
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their searching capability. Where T (0, 1) denotes to a
random number generated using torus distribution over
the interval of [0, 1]. xt

ij is current local best position
of ith bats at jth dimension where iter representing the
current epoch number. Our improved exploitation strategy
is introduced for conquering this local search problem,
i.e., enhances local search technique throughout the global
solution, maintains population heterogeneity, and reaches to
a uniform result. The proposed technique for TW-BA is
presented in Algorithm 2.

5 Experiments

The core objective of our simulations was to demonstrate
that TW-BA has superior results over standard BA and
similarly, the results were compared with other famous
approaches like Standard BA, PSO DE, GA, CS, HS
and dBA. All these described techniques were tested for
standard function optimisation problem that relate to the
part of combinatorial problems.

5.1 Benchmark suite

Nine famous standard benchmark functions were taken
from the literature. Detail of these well- known functions
for the researchers can be studied in Chakri et al. (2017).
Standard functions detail is provided in the Table 2, which
contains attributes like function name, its definition and
function label f.

In Table 4, each function is labelled with serial number
from 1 to 9. Generally, as the dimension size of the
problem increases, the problem becomes tough to solve.
Consequently, in this simulation, benchmark functions with
higher dimensions are optimised.

5.2 Experimental setup

During the experiments, features of TW-BA have been
seen and tested. The results of standard BA are compared
with TW-BA and PSO. The findings of the others famous
algorithms were also shown in the comparative study.
Where parameter setting is concerned, the best parameters
were selected to keep the unbiased comparison. Parameter
settings suites were discovered after hit and trial method.
The experimental setup of simulation is set as with swarm
size 40 and the dimensions of the problem for all standard
benchmark function are 10, 20, 30 and 50. Against each
dimension size, the total number of epochs is 1,000,
2,000, 3,000 and 5,000 sequentially. For moderately fair
comparison, TW-BA is compared with standard BA and six
other algorithms on comparable parameters. All methods
were observed for 30 numbers of runs to analyse the
performances.

6 Results and discussion

The proposed variant of TW-BA is executed on HP Compaq
with configuration Intel Core i7-3200, with speed 3.8 GHZ
with RAM 4 GB. In order to validate the integrity and
effectiveness of the suggested variant, a set of 19 uni-modal
and multi-modal standard benchmark functions have been
carried out to compare the TW-BA with standard BA,
dBA (Chakri et al., 2017), PSO (Kennedy and Eberhart,
1995), CS (Yang and Deb, 2009), HS (Geem et al., 2001),
DE (Das and Suganthan, 2011) and GA (Davis, 1991).
In terms of convergence rate, local search, and global
search, the performance of elocutionary algorithms is tested
on standard nonlinear benchmark functions. The detailed
description and the characteristics of these benchmark
functions are listed in Table 2 and Table 3, where Table 4
contains experimental results. In Table 3 the possible lowest
value is represented by x∗ and f∗ indicates the global least
value of fitness function f.

The goal of this study is to develop the strong aptitude
of standard BA by introducing two strategies chaotic
random inertia weight and torus walk. The chaotic random
inertia weight controls the scale of global search and local
search of BA while torus walk enhances the exploitation
ability of BA. The purpose of this study continues to
observe the unique characteristics of experimental results
that rely on dimensions of these standard benchmark
functions.

In the experiments, three simulation experiments were
performed and following features of TW-BA were observed

• impact of TW-BA

• impact of dimension’s nature for problems

• a comparative analysis.

During the first experiment, inertia weight and torus
walk was integrated in TW-BA. The objective of second
simulation is to find the nature of dimension regarding
standard function optimisation. Lastly, the simulation
results of TW-BA were compared with standard BA and
dBA along with famous approaches like PSO, DE, GA, CS
and HS. In the rest of the paper, simulation results were
discussed in detail.

6.1 Impact of TW-BA

In this model, torus walk is incorporated with the standard
BA rather than uniform walk, as well as, inertia weight
is embedded. The introduced algorithm, which is referred
as TW-BA, can be deliberated as outstanding algorithm
from all others seven comparable algorithms as displayed
in Table 4. The introduced TW-BA is capable to work
effectively in both problems of low and high dimensions.
Due to the incorporation of torus walk with respect to
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standard BA, the introduced algorithm is appropriate for the
solution of low and high dimensional problems as compared
to other algorithms. The functionality of proposed TW-BA
in low and high dimensional problems explains that the
TW-BA is remarkable.

The proposed algorithm TW-BA gives superior results
on all 19 test functions in higher and lower dimensions.
Similarly, it depicts that the proposed TWBA are better than
PSO and standard BA algorithms, is shown in Table 5.

Table 2 Nineteen standard benchmark functions

f Function name Definition

f1 Sphere Minf(x) =
∑n

i=1 x
2
i

f2 Axis parallel hyper-ellipsoid Minf(x) =
∑n

i=1 i.x
2
i

f3 Schumer Steiglitz Minf(x) =
∑n

i=1 x
4
i

f4 Schwefel 2.23 Minf(x) =
∑n

i=1 x
10
i

f5 Powell singular 2 Minf(x) =
∑D−2

i=1 (xi−1 + 10xi)
2 + 5(xi+1 − xi+2)

2 + (xi − 2xi+1)
4

+ 10(xi−1 − xi+2)
4

f6 Schwefel 2.21 Minf(x) =
(max |xi|
1<i<D

)
f7 Rastrigin Minf(x) =

∑n
i=1 [x

2
i − 10cos . (2πx) + 10]i

f8 Ackley Minf(x) = −20exp(−0.2
√

1
n

∑n
i=1 [x

2
i − exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e

f9 Schwefel 1.2 Minf(x) =
∑D

i (
∑i

j=1 xj)
2

f10 Rotated hyper-ellipsoid Minf(x) =
∑n

i (
∑i

j=1 xj)
2

f11 Moved axis parallel hyper-ellipsoid Minf(x) =
∑n

i=1 5i.x
2
i

f12 Sum of different power Minf(x) =
∑n

i=1 |xi|i+1

f13 Noisy function Minf(x) =
∑n

i=1 (i+ 1).x2
i + rand[0, 1]

f14 Salomon function 1− cos(2π
√∑n

i=1 x
2
i ) + 0.1(

√∑n
i=1 x

2
i )

f15 Schwefel 2.22 Minf(x) =
∑D

i=1 |xi|+
∏n

i=1 |xi|
f16 Sum squares function Minf(x) =

∑n
i=1 i.x

2
i

f17 Zakharov function Minf(x) =
∑n

i=1 x
2
i+(1/2

∑n
i=1 i.xi)

2+(1/2
∑n

i=1 i.xi)
4

f18 Dixon and price function Minf(x) = (xi − 1)2 +
∑n

i=2 i.(2x
2
i − xi−1)

2

f19 Cigar Minf(x) = x2
i + 106

∑n
i=2 x

2
i

Table 3 Characteristics of standard benchmark functions

f x f Domain

f1 (0, 0, 0 . . . , 0) 0.00 −5.12 ≤ xi ≤ 5.12

f2 (0, 0, 0 . . . , 0) 0.00 −5.12 ≤ xi ≤ 5.12

f3 (0, 0, 0 . . . , 0) 0.00 −5.12 ≤ xi ≤ 5.12

f4 (0, 0, 0 . . . , 0) 0.00 −10 ≤ xi ≤ 10

f5 (0, 0, 0 . . . , 0) 0.00 −4 ≤ xi ≤ 5

f6 (0, 0, 0 . . . , 0) 0.00 −100 ≤ xi ≤ 100

f7 (0, 0, 0 . . . , 0) 0.00 −5.12 ≤ xi ≤ 5.12

f8 (0, 0, 0 . . . , 0) 0.00 −35 ≤ xi ≤ 35

f9 (0, 0, 0 . . . , 0) 0.00 −100 ≤ xi ≤ 100

f10 (0, 0, 0 . . . , 0) 0.00 −65.536 ≤ xi ≤ 65.536

f11 (5 ∗ i) 0.00 −5.12 ≤ xi ≤ 5.12

f12 (0, 0, 0 . . . , 0) 0.00 −1 ≤ xi ≤ 1

f13 (0, 0, 0 . . . , 0) 0.00 −1.28 ≤ xi ≤ 1.28

f14 (0, 0, 0 . . . , 0) 0.00 −100 ≤ xi ≤ 100

f15 (0, 0, 0 . . . , 0) 0.00 −100 ≤ xi ≤ 100

f16 (0, 0, 0 . . . , 0) 0.00 −10 ≤ xi ≤ 10

f17 (0, 0, 0 . . . , 0) 0.00 −5 ≤ xi ≤ 10

f18 (f(2( 2
i−2
2i

))) 0.00 −10 ≤ xi ≤ 10

f19 (0, 0, 0 . . . , 0) 0.00 −100 ≤ xi ≤ 100
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Table 4 Comprehensive results for TW-BA with other variants

F BA dBA (Chakri
et al., 2017) PSO CS (Chakri

et al., 2017)
HS (Chakri
et al., 2017)

DE (Chakri
et al., 2017)

GA (Chakri
et al., 2017) TW-BA

F1 Best 8.27E-08 1.927E-03 0.00E+00 2.340E+02 5.919E+03 2.481E+01 5.517E+00 0.00E+00
Median 1.51E-07 1.408E-02 0.00E+00 4.357E+02 9.621E+03 4.120E+01 6.560E+02 2.04E-317
Worst 2.05E-07 2.233E+00 1.77E-25 6.119E+02 1.568E+04 8.028E+01 7.964E+03 5.66E-304
Mean 1.49E-07 2.256E-01 5.91E-27 4.153E+02 9.618E+03 4.411E+01 1.678E+03 2.42E-305
SD 2.90E-08 4.869E-01 3.18E-26 9.518E+01 2.226E+03 1.259E+01 2.032E+03 0.00E+00

F12 Best 5.51E-04 1.011E+06 1.53E-228 3.229E+17 2.573E+33 9.080E+08 7.488E+04 3.32E-237
Median 1.02E-03 8.171E+09 1.00E-223 7.654E+19 7.580E+37 1.177E+11 9.245E+29 3.17E-207
Worst 2.00E-03 1.713E+13 9.82E-123 2.433E+22 8.664E+42 1.553E+12 2.390E+41 1.77E-182
Mean 1.11E-03 1.363E+12 3.27E-124 2.263E+21 3.533E+41 3.051E+11 1.049E+40 5.89E-184
SD 3.50E-04 4.261E+12 1.76E-123 5.976E+21 1.697E+42 4.102E+11 4.671E+40 0.00E+00

F10 Best 1.43E+07 1.634E-02 0.00E+00 1.062E+03 4.124E+04 9.877E+01 8.280E+01 0.00E+00
Median 1.73E+08 3.115E-01 0.00E+00 1.996E+03 5.220E+04 1.618E+02 5.373E+03 0.00E+00
Worst 6.74E+08 1.256E+02 6.16E-132 3.409E+03 7.472E+04 3.850E+02 3.294E+04 0.00E+00
Mean 2.16E+08 1.461E+01 2.05E-133 2.138E+03 5.336E+04 1.742E+02 8.130E+03 0.00E+00
SD 1.55E+08 3.456E+01 1.11E-132 5.493E+02 8.132E+03 6.173E+01 8.472E+03 0.00E+00

F7 Best 1.06E+02 6.812E+01 –8.70E+04 1.129E+02 1.330E+02 2.998E+01 2.994E+01 0.00E+00
Median 1.74E+02 1.057E+02 –8.70E+04 1.378E+02 1.625E+02 1.575E+02 5.895E+01 0.00E+00
Worst 2.54E+02 2.471E+02 0.00E+00 1.644E+02 1.845E+02 2.047E+02 9.913E+01 0.00E+00
Mean 1.85E+02 1.193E+02 –8.60E+04 1.366E+02 1.580E+02 1.551E+02 5.746E+01 0.00E+00
SD 3.96E+01 4.023E+01 5.09E+03 1.349E+01 1.558E+01 3.368E+01 1.825E+01 0.00E+00

F8 Best 2.30E+00 3.214E+00 2.72E+00 8.691E+00 1.366E+01 2.302E+00 2.595E+00 4.44E-16
Median 3.13E+00 5.681E+00 2.72E+00 1.200E+01 2.384E+01 3.191E+00 5.744E+00 4.44E-16
Worst 3.88E+00 8.801E+00 2.72E+00 1.750E+01 3.540E+01 3.648E+00 1.145E+01 4.44E-16
Mean 3.22E+00 5.839E+00 2.72E+00 1.209E+01 2.417E+01 3.191E+00 5.920E+00 4.44E-16
SD 3.75E-01 1.730E+00 8.88E-16 1.753E+00 5.004E+00 2.904E-01 2.453E+00 4.93E-32

F17 Best 1.02E+00 7.536E+01 1.07E-209 1.337E+02 2.960E+02 1.414E+02 1.122E+01 4.73E-275
Median 2.21E+01 1.561E+02 2.32E-166 2.190E+02 4.023E+02 1.879E+02 7.707E+06 1.39E-247
Worst 6.23E+03 2.506E+02 2.73E-14 3.009E+02 5.713E+02 2.352E+02 9.316E+08 4.02E-234
Mean 3.31E+02 1.515E+02 9.11E-16 2.214E+02 4.052E+02 1.937E+02 9.884E+07 2.26E-235
SD 1.21E+03 4.105E+01 4.90E-15 4.094E+01 6.898E+01 2.433E+01 2.076E+08 0.00E+00

F18 Best 2.96E+05 7.448E-01 6.67E-01 1.059E+02 4.057E+04 2.650E+01 1.207E+01 7.56E-01
Median 7.46E+05 5.528E+00 6.67E-01 2.200E+02 7.688E+04 6.164E+01 1.836E+03 9.32E-01
Worst 1.87E+06 1.044E+02 6.67E-01 6.159E+02 1.282E+05 1.438E+02 3.631E+04 9.95E-01
Mean 8.43E+05 1.911E+01 6.79E-01 2.611E+02 7.853E+04 6.790E+01 6.494E+03 9.16E-01
SD 3.43E+05 2.917E+01 6.72E-02 1.384E+02 2.813E+04 2.559E+01 9.520E+03 6.44E-02

F19 Best 1.96E+05 4.499E+01 1.03E-259 1.542E+08 6.110E+07 1.283E+05 1.474E+06 -3.86E-12
Median 2.86E+05 3.283E+02 7.65E-138 3.709E+08 8.407E+07 2.388E+05 1.061E+07 -1.26E-29
Worst 5.92E+05 2.518E+03 7.01E-06 6.179E+08 1.111E+08 3.528E+05 8.335E+07 0.00E+00
Mean 3.19E+05 4.926E+02 2.34E-07 3.760E+08 8.696E+07 2.392E+05 1.803E+07 -1.52E-12
SD 9.74E+04 5.304E+02 1.26E-06 1.192E+08 1.489E+07 6.522E+04 2.213E+07 7.50E-12

F14 Best 9.80E+00 3.554E-01 1.56E-135 2.426E+01 6.724E+02 3.377E+00 9.307E+00 9.99E-02
Median 1.59E+01 1.328E+00 2.52E-91 4.450E+01 9.243E+02 5.082E+00 1.757E+02 9.99E-02
Worst 2.08E+01 2.357E+00 8.00E-01 8.646E+01 1.277E+03 8.308E+00 7.373E+02 9.99E-02
Mean 1.61E+01 1.417E+00 3.67E-02 4.591E+01 9.074E+02 5.193E+00 2.319E+02 9.99E-02
SD 2.55E+00 4.826E-01 1.47E-01 1.265E+01 1.325E+02 1.241E+00 1.940E+02 5.55E-17
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Table 5 Comprehensive results from F1 to F10 for TW-BA, BA and PSO

F# IT DIM
BA PSO TW-BA

Best Worst Mean Std. dev. Best Worst Mean Std. dev. Best Worst Mean Std. dev.

F1 1,000 10 3.57E-08 3.37E-07 1.70E-07 7.48E-08 3.20E-129 2.33E-73 7.76E-75 4.18E-74 1.14E-205 1.26E-172 4.37E-174 0.00E+00
2,000 20 8.45E-08 2.78E-07 1.53E-07 3.87E-08 1.97E-241 1.02E-83 3.40E-85 1.83E-84 1.00E-272 2.31E-250 8.71E-252 0.00E+00
3,000 30 8.27E-08 2.05E-07 1.49E-07 2.90E-08 0.00E+00 1.77E-25 5.91E-27 3.18E-26 0.00E+00 5.66E-304 2.42E-305 0.00E+00
5,000 50 8.63E-08 1.85E-07 1.28E-07 2.19E-08 3.48E-243 2.62E+01 8.74E-01 4.71E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 1,000 10 1.98E-07 1.07E-06 6.45E-07 2.28E-07 4.49E-130 1.30E-80 4.34E-82 2.33E-81 7.47E-193 4.79E-174 2.02E-175 0.00E+00
2,000 20 6.42E-07 3.02E-06 1.51E-06 5.35E-07 7.50E-242 1.16E-89 3.85E-91 2.07E-90 9.08E-269 7.41E-248 2.48E-249 0.00E+00
3,000 30 2.02E-06 5.89E-06 3.42E-06 1.18E-06 0.00E+00 2.50E-65 8.34E-67 4.49E-66 0.00E+00 7.04E-303 2.47E-304 0.00E+00
5,000 50 1.24E-05 2.55E-05 1.77E-05 3.50E-06 6.72E-244 1.10E+03 3.67E+01 1.98E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F3 1,000 10 7.18E-17 1.43E-14 5.22E-15 3.50E-15 8.25E-250 2.23E-137 7.45E-139 4.01E-138 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,000 20 8.13E-16 8.76E-15 3.20E-15 1.76E-15 0.00E+00 3.79E-147 1.26E-148 6.80E-148 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3,000 30 9.24E-16 4.14E-15 2.22E-15 7.39E-16 0.00E+00 4.43E-125 1.48E-126 7.96E-126 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5,000 50 6.88E-16 2.82E-15 1.51E-15 5.55E-16 0.00E+00 1.40E-26 4.68E-28 2.52E-27 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 1,000 10 3.60E-41 1.98E-35 2.01E-36 3.77E-36 0.00E+00 3.11E-316 1.03E-317 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,000 20 5.52E-39 1.98E-36 1.79E-37 3.57E-37 0.00E+00 9.05E-273 3.02E-274 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3,000 30 4.26E-40 4.51E-37 9.54E-38 1.29E-37 0.00E+00 3.52E-213 1.17E-214 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5,000 50 5.19E-39 8.58E+03 3.89E+02 1614.56 0.00E+00 2.95E-141 9.83E-143 5.29E-142 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F5 1,000 10 5.69E+00 4.55E+03 7.03E+02 1.02E+03 1.00E+05 1.00E+05 1.00E+05 2.91E-11 8.36E-168 2.91E-120 9.69E-122 5.22E-121
2,000 20 1.05E+02 1.12E+04 2.64E+03 2.65E+03 1.00E+05 1.00E+05 1.00E+05 2.91E-11 1.77E-235 1.52E-208 5.06E-210 0.00E+00
3,000 30 3.29E+02 3.36E+04 5.55E+03 6.70E+03 1.00E+05 1.00E+05 1.00E+05 2.91E-11 1.15E-286 1.99E-255 7.86E-257 0.00E+00
5,000 50 2.66E+03 3.82E+04 1.20E+04 8.30E+03 1.00E+05 1.00E+05 1.00E+05 2.91E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 1,000 10 1.40E+01 4.79E+01 3.15E+01 9.01E+00 2.50E-65 1.57E-38 5.23E-40 2.82E-39 2.07E-93 3.84E-85 1.29E-86 6.89E-86
2,000 20 3.31E+01 5.38E+01 4.58E+01 4.44E+00 2.69E-124 1.22E-16 4.06E-18 2.19E-17 1.31E-134 1.64E-122 7.71E-124 2.98E-123
3,000 30 3.12E+01 6.47E+01 5.22E+01 7.59E+00 6.85E-129 8.94E-04 2.98E-05 1.61E-04 1.25E-165 2.83E-149 1.92E-150 6.34E-150
5,000 50 5.00E+01 7.06E+01 6.08E+01 5.39E+00 6.79E-67 1.26E+00 4.23E-02 2.26E-01 4.24E-201 8.02E-180 2.68E-181 0.00E+00

F7 1,000 10 9.95E+00 8.26E+01 4.39E+01 1.84E+01 –9.00E+03 0.00E+00 –8.97E+03 1.61E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,000 20 7.56E+01 1.83E+02 1.15E+02 2.33E+01 –3.80E+04 0.00E+00 –3.77E+04 1.50E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3,000 30 1.06E+02 2.54E+02 1.85E+02 3.96E+01 –8.70E+04 0.00E+00 –8.60E+04 5.09E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5,000 50 2.28E+02 4.81E+02 3.37E+02 4.63E+01 –2.45E+05 0.00E+00 –2.41E+05 2.09E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 1,000 10 1.75E+00 3.19E+00 2.36E+00 3.75E-01 2.72E+00 2.72E+00 2.72E+00 8.88E-16 4.44E-16 4.44E-16 4.44E-16 4.93E-32
2,000 20 2.33E+00 4.13E+00 3.13E+00 3.86E-01 2.72E+00 2.72E+00 2.72E+00 8.88E-16 4.44E-16 4.44E-16 4.44E-16 4.93E-32
3,000 30 2.30E+00 3.88E+00 3.22E+00 3.75E-01 2.72E+00 2.72E+00 2.72E+00 8.88E-16 4.44E-16 4.44E-16 4.44E-16 4.93E-32
5,000 50 2.85E+00 4.21E+00 3.56E+00 3.74E-01 2.72E+00 2.72E+00 2.72E+00 8.88E-16 4.44E-16 4.44E-16 4.44E-16 4.93E-32

F9 1,000 10 5.09E+02 9.97E+03 3.50E+03 2.26E+03 6.04E-91 4.77E-64 3.78E-02 2.03E-01 8.31E-144 9.80E-100 3.27E-101 1.76E-100
2,000 20 1.08E+04 1.32E+05 4.00E+04 2.82E+04 1.43E-105 1.38E+02 4.62E+00 2.47E+01 2.76E-152 1.17E-91 3.90E-93 2.10E-92
3,000 30 2.66E+04 8.84E+05 2.87E+05 2.36E+05 1.15E-101 7.44E+01 2.48E+00 1.34E+01 1.28E-159 1.68E-87 5.74E-89 3.01E-88
5,000 50 3.05E+05 8.47E+06 1.54E+06 1.67E+06 3.78E-109 1.12E+02 3.74E+00 2.01E+01 4.21E-176 1.93E-09 6.42E-11 3.46E-10

F10 1,000 10 1.84E-15 9.64E+05 1.74E+05 2.59E+05 2.71E-249 1.14E-147 3.81E-149 2.05E-148 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,000 20 3.66E+05 9.41E+07 1.98E+07 1.68E+07 0.00E+00 7.91E-153 2.64E-154 1.42E-153 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3,000 30 1.43E+07 6.74E+08 2.16E+08 1.55E+08 0.00E+00 6.16E-132 2.05E-133 1.11E-132 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5,000 50 2.93E+08 3.57E+09 1.47E+09 6.73E+08 0.00E+00 6.76E-39 2.25E-40 1.21E-39 0.00E+00 0.00E+00 0.00E+00 0.00E+00



A modified bat algorithm with torus walk for solving global optimisation problems 9

Table 6 Comprehensive results from F11 to F19 for TW-BA, BA and PSO

F# IT DIM
BA PSO TW-BA

Best Worst Mean Std. dev. Best Worst Mean Std. dev. Best Worst Mean Std. dev.

F11 1,000 10 9.89E-07 5.35E-06 3.23E-06 1.14E-06 2.25E-129 6.50E-80 2.17E-81 1.17E-80 3.73E-192 2.39E-173 1.01E-174 0.00E+00
2,000 20 3.21E-06 1.51E-05 7.55E-06 2.68E-06 3.75E-241 5.78E-89 1.93E-90 1.04E-89 4.54E-268 3.70E-247 1.24E-248 0.00E+00
3,000 30 1.01E-05 2.94E-05 1.71E-05 5.89E-06 0.00E+00 1.25E-64 4.17E-66 2.25E-65 0.00E+00 3.52E-302 1.24E-303 0.00E+00
5,000 50 6.19E-05 1.27E-04 8.85E-05 1.75E-05 3.36E-243 5.51E+03 1.84E+02 9.88E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 1,000 10 1.09E-04 1.10E-03 5.04E-04 2.39E-04 2.44E-83 1.05E-64 3.49E-66 1.88E-65 2.29E-136 2.49E-104 8.30E-106 4.47E-105
2,000 20 2.86E-04 1.86E-03 8.59E-04 3.20E-04 1.03E-153 3.03E-107 1.01E-108 5.44E-108 6.56E-192 .37E-147 2.46E-148 1.32E-147
3,000 30 5.51E-04 2.00E-03 1.11E-03 3.50E-04 1.53E-228 9.82E-123 3.27E-124 1.76E-123 3.32E-237 1.77E-182 5.89E-184 0.00E+00
5,000 50 6.28E-04 1.89E-03 1.16E-03 3.35E-04 0.00E+00 1.13E-142 3.77E-144 2.03E-143 1.62E-268 1.27E-213 4.24E-215 0.00E+00

F13 1,000 10 3.24E-03 7.46E-02 2.84E-02 1.62E-02 4.01E-11 1.63E-03 6.75E-05 2.94E-04 7.30E-07 7.16E-04 1.34E-04 1.61E-04
2,000 20 2.86E-02 1.69E-01 7.70E-02 3.50E-02 1.01E-10 3.41E-03 1.28E-04 6.12E-04 8.42E-07 3.08E-04 8.15E-05 6.59E-05
3,000 30 5.14E-02 2.62E-01 1.70E-01 4.55E-02 4.24E-14 1.46E-02 5.00E-04 2.62E-03 2.08E-07 1.94E-04 6.40E-05 5.52E-05
5,000 50 2.02E-01 7.53E-01 4.33E-01 1.24E-01 2.47E-14 2.15E+01 7.21E-01 3.86E+00 5.40E-08 6.34E-04 8.51E-05 1.45E-04

F14 1,000 10 4.30E+00 1.11E+01 7.21E+00 1.53E+00 2.90E-59 2.00E-01 9.99E-03 3.96E-02 1.56E-82 9.99E-02 9.32E-02 2.49E-02
2,000 20 9.50E+00 1.63E+01 1.28E+01 1.84E+00 2.35E-107 3.00E-01 2.00E-02 6.53E-02 9.99E-02 9.99E-02 9.99E-02 5.55E-17
3,000 30 9.80E+00 2.08E+01 1.61E+01 2.55E+00 1.56E-135 8.00E-01 3.67E-02 1.47E-01 9.99E-02 9.99E-02 9.99E-02 5.55E-17
5,000 50 1.63E+01 2.71E+01 2.20E+01 2.50E+00 2.22E-126 1.20E+00 9.99E-02 2.55E-01 9.99E-02 9.99E-02 9.99E-02 5.55E-17

F15 1,000 10 2.11E+02 2.27E+06 2.54E+05 4.94E+05 2.50E-65 1.57E-38 5.23E-40 2.82E-39 3.71E-94 1.47E-85 7.14E-87 2.71E-86
2,000 20 5.43E+06 1.10E+22 6.30E+20 2.20E+21 2.69E-124 1.22E-16 4.06E-18 2.19E-17 1.00E-133 4.29E-126 4.60E-127 1.12E-126
3,000 30 1.44E+03 3.46E+36 1.51E+35 6.42E+35 6.85E-129 8.94E-04 2.98E-05 1.61E-04 2.39E-163 6.85E-150 2.66E-151 1.23E-150
5,000 50 2.44E+03 3.98E+64 1.44E+63 7.15E+63 6.79E-67 1.26E+00 4.23E-02 2.26E-01 6.49E-202 4.78E-184 1.60E-185 0.00E+00

F16 1,000 10 2.00E-07 9.62E-07 6.65E-07 1.83E-07 5.55E-129 4.14E-78 1.38E-79 7.44E-79 1.42E-191 8.95E-172 3.15E-173 0.00E+00
2,000 20 8.07E-07 2.16E-06 1.45E-06 4.14E-07 2.49E-243 8.45E-89 2.82E-90 1.52E-89 3.00E-276 4.47E-249 1.76E-250 0.00E+00
3,000 30 1.93E-06 7.65E-06 3.46E-06 1.35E-06 0.00E+00 2.18E-29 7.25E-31 3.91E-30 0.00E+00 3.05E-296 1.02E-297 0.00E+00
5,000 50 9.19E-06 1.10E+02 9.84E+00 2.27E+01 1.11E-234 4.85E-03 1.62E-04 8.71E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F17 1,000 10 1.46E-07 5.68E-07 3.11E-07 1.02E-07 2.18E-117 2.91E-50 9.69E-52 5.22E-51 7.99E-181 3.05E-161 1.02E-162 5.44E-162
2,000 20 1.79E-07 1.84E+00 6.15E-02 3.31E-01 4.06E-182 1.21E-26 4.05E-28 2.18E-27 8.42E-237 1.34E-211 4.47E-213 0.00E+00
3,000 30 1.02E+00 6.23E+03 3.31E+02 1.21E+03 1.07E-209 2.73E-14 9.11E-16 4.90E-15 4.73E-275 4.02E-234 2.26E-235 0.00E+00
5,000 50 1.79E+02 1.10E+06 7.82E+04 2.70E+05 9.25E-192 1.12E-06 3.74E-08 2.02E-07 1.08E-276 2.71E-241 9.04E-243 0.00E+00

F18 1,000 10 4.60E+03 7.34E+04 3.04E+04 1.84E+04 3.20E-31 3.20E-31 3.20E-31 1.31E-46 6.77E-01 9.63E-01 7.65E-01 7.52E-02
2,000 20 4.15E+04 4.83E+05 2.67E+05 1.18E+05 6.67E-01 6.67E-01 6.67E-01 0.00E+00 7.17E-01 9.59E-01 3.11E-01 6.12E-02
3,000 30 2.96E+05 1.87E+06 8.43E+05 3.43E+05 6.67E-01 6.67E-01 6.79E-01 6.72E-02 7.56E-01 9.95E-01 2.16E-01 6.44E-02
5,000 50 1.29E+06 4.95E+06 3.25E+06 8.40E+05 6.67E-01 1.22E+01 1.05E+00 2.07E+00 8.68E-01 1.00E+00 9.64E-01 3.02E-02

F19 1,000 10 4.22E+03 4.43E+04 2.02E+04 1.07E+04 4.10E-126 3.23E-78 1.08E-79 5.80E-79 -2.13E-16 0.00E+00 -4.31E-12 2.32E-11
2,000 20 4.77E+04 1.54E+05 9.23E+04 3.06E+04 3.28E-238 3.54E-88 1.18E-89 6.36E-89 -7.68E-12 0.00E+00 -2.79E-12 1.32E-11
3,000 30 6.01E+04 2.68E+05 1.64E+05 4.75E+04 0.00E+00 3.55E-37 1.18E-38 6.38E-38 -2.78E-19 1.40E-307 -5.16E-14 2.78E-13
5,000 50 1.96E+05 5.92E+05 3.19E+05 9.74E+04 1.03E-259 7.01E-06 2.34E-07 1.26E-06 -3.86E-12 0.00E+00 -1.52E-12 7.50E-12
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6.2 Impact of nature of dimension of problems

The core objective is to find the superiority of results
depending upon the functions’ dimension that are to be
optimised. In experiments, four dimensions for benchmark
functions D = 10, D = 20, D = 30 and D = 50
were used. Simulation results were presented in Table 5.
With the increase of dimension (up to 50 dimensions),
the performance of TW-BA in all 19 test functions is
better than PSO and standard BA algorithms that can be
seen in Table 6. With the increase of dimensions, the
advantages of TW-BA become more and more obvious.
The TW-BA is very suitable to solve high-dimensional
numerical optimisation problems. In Figures 1 to 12, the
convergence of PSO, traditional BA and proposed algorithm
TW-BA have been illustrated. These figures verified that
proposed TW-BA can converge most appropriately in the
functions of both uni-modal and multi-modal as compared
to traditional BA and PSO, meanwhile, disclosed that
TW-BA is efficient than PSO and traditional BA within
these functions.

From these simulation results, it was identified that
functions are having larger dimensions found toughest to
optimise, which can be seen from Table 4, where dimension
size is D = 30. Table 4 gives the results of comparison with
these seven algorithms in 30 dimensions. From Table 4, we
can see that TW-BA is superior to standard BA and seven
test functions for PSO.

6.3 Comparative study

In order to validate the efficiency of proposed algorithm,
the introduced algorithms, traditional BA and PSO are
examined through benchmark test functions with various
dimensions as displayed in Tables 2 and 3. In Table 5,
the estimated values of best, worst, mean and standard
deviation are illustrated. As can see in Table 5, the
performance of proposed TW-BA technique increases as
the dimensions of the function expands. Thus, it can also
be seen that the performance of traditional BA and PSO
decreases as the dimensions expands. It has been observed
that proposed TW-BA outperforms than traditional BA and
PSO among all the standard test functions with various
dimensions other than f14 and f18 functions with low
dimension (d = 10, 20, 30) and f19 function only on d = 10.

The second part of experiment compares the
performance of the TW-BA algorithm that used to verify
the diversity and convergence with other algorithms. In
order to compare these algorithms in a better way, we
analysed the performance comparison for dimension size d
= 30. From Table 4, we can see that TW-BA is superior to
BA, dBA, CS, HS, DE and GA in all nine test functions
and seven test functions are superior to PSO.

Figure 1 Convergence curve on f1 (see online version
for colours)

Figure 2 Convergence curve on f2 (see online version
for colours)

Figure 3 Convergence curve on f3 (see online version
for colours)
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Figure 4 Convergence curve on f4 (see online version
for colours)

Figure 5 Convergence curve on f5 (see online version
for colours)

Figure 6 Convergence curve on f6 (see online version
for colours)

Figure 7 Convergence curve on f7 (see online version
for colours)

Figure 8 Convergence curve on f8 (see online version
for colours)

Figure 9 Convergence curve on f9 (see online version
for colours)
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Figure 10 Convergence curve on f10 (see online version
for colours)

Figure 11 Convergence curve on f11 (see online version
for colours)

Figure 12 Convergence curve on f12 (see online version
for colours)

7 Conclusions

In this paper, to enhance the local search capability of
standard BA, a new variant TW-BA is introduced to solve
the high dimension problems. Standard BA has inefficiency
of exploitation in solving the high dimension multi-modal
function optimisation problems. In this research, BA is
enhanced with incorporating the torus walk instead of
random walk for local searching and also integrating
the chaotic inertia weight to balance the major two
components of exploration and exploitation. From the
experimental simulation results, it is depicted that TW-BA
has better convergence rate and consistent as compared to
standard BA, dBA, PSO, CS, HS, DE and GA. In the
future, performance comparison of the proposed approach
can be examined with other meta-heuristic algorithms.
Furthermore, hybridisation of proposed technique with other
approaches may also be fruitful.
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flights’, World Congress on Nature & Biologically Inspired
Computing, 2009. NaBIC 2009, pp.210–214, IEEE.

Yilmaz, S. and Kucuksille, E.U. (2013) ‘Improved bat algorithm
(IBA) on continuous optimization problems’, Lecture Notes
on Software Engineering, Vol. 1, No. 3, p.279.

Yılmaz, S., Kucuksille, E.U. and Cengiz, Y. (2014) ‘Modified bat
algorithm’, Elektronika ir Elektrotechnika, Vol. 20, No. 2,
pp.71–78.

Zhou, Y., Xie, J., Li, L. and Ma, M. (2014) ‘Cloud model bat
algorithm’, The Scientific World Journal, Vol. 2014, pp.1–11.


