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Abstract: Hastealloy C276 is hard to machine superalloy and extensively used 
in various engineering applications. It possess good strength and lower thermal 
conductivity which results in decreased tool life and poor machinability by 
conventional machining. Advanced machining processes have developed to 
overcome these difficulties and claimed as an alternative methods. Electrical 
Discharge Machining (EDM) is one of the advanced method used for 
machining of hard materials. This article details an investigation on EDM 
process and development of hybrid Grey ANN model. Taguchi method and 
ANOVA are used for designing the experiments and statistical analysis 
respectively. Grey Relational Analysis is adopted for determining the Grey 
Relational Grade (GRG) to represent the multi aspect optimization model and a 
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neural network has been evolved to predict GRG by feeding the Grey 
Relational Co-efficient (GRC) values as input to developed neural network 
model. A comparison has been done between the experimental values and 
predicted values. 

Keywords: electrical discharge machining; EDM; hard materials; haste alloy; 
Taguchi’s methodology; form and orientation tolerances; grey relational 
analysis; GRA; artificial neural network; ANN. 
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1 Introduction 

Superalloys are heat resistant materials and the mechanical, chemical properties of the 
materials are remains unchanged during high temperature applications (Cai et al., 2014; 
Wu, 2007; Dave et al., 2013; Natarajan et al., 2013). The properties of superalloys such 
as high strength and hardness, low thermal diffusivity makes them as hard to machine 
materials (Qu et al., 2014). High strength and high hardness of these materials results in 
poor machining performance and more tool wear with the help of traditional machining 
processes. So there is a need to find a solution for machining of these superalloys with 
the help of unconventional material removal process. Electrical discharge machining 
(EDM) is one of the advanced method of material removal, extensively used for 
machining the various engineering components which are used in automobiles, aerospace 
and biomedical industries (Ho and Newman, 2003). A continuous and repeated electrical 
discharge between the tool (electrode) and the work materials, results in material removal 
from the work piece in the presence of dielectric fluid (Luis et al., 2005; Marafona and 
Chousal, 2006). The tool (electrode) moves towards the work piece until the gap between 
the tool and work piece is close enough to ionise the dielectric fluid by supplied voltage. 
Tool (electrode) and the work material are separated by the short duration discharges in 
dielectric gap. The removal of material takes place due to the erosive action. The material 
removal process takes place with irrespective of material hardness. The schematic of 
EDM process is shown in Figure 1 (El-Hofy, 2005). An exploration on EDM drilling of 
nickel alloy is detailed and the supplied current is the important process parameter for 
obtaining the better material removal rate (MRR) (Kuppan et al., 2008). The plan of 
experiment is most important to decide the significance of the process parameters. 
Taguchi’s experimental design method is a powerful approach for planning the 
experiments and to solve the single objective optimisation problems. The machining 
performance and influence of process variables are detailed by various researchers on 
EDM process (Dhanabalan et al., 2013; Bharti et al., 2010; Caiazzo et al., 2015; Baraskar 
et al., 2013). Grey system theory has been suggested by Deng and it has been confirmed  
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to be a successful approach for handling the deficient and uncertain information (Deng, 
1989). Various multi criteria decision making (MCDM) tools such as grey relational 
analysis (GRA) have been used for conventional and unconventional machining process 
for determining the multi performance machining characteristics (Tripathy and Tripathy, 
2016; Palanisamy and Senthil, 2016). 

Figure 1 Schematic of electrical discharge machine 

 

Regardless of various advantages, the output variables have some uncertainty and unclear 
data in GRA method. To overcome such kind of limitations, grey-based advanced 
optimisation method have been employed by various researchers. The use of grey-based 
fuzzy method will considerably improve the performance of machining. The grey fuzzy 
approach has momentous influence on the enhancement of machining performance and 
accuracy of outcomes (Ahilan et al., 2009; Das et al., 2014; Lin et al., 2000; Pandey and 
Panda, 2014; Suresh et al., 2014; Guo et al., 2017). So the adoption of the grey theory 
with any of the artificial intelligence decision making tools will help to improve the 
desired performance measures. The development of intelligent decision making tools for 
prediction of desired performance measure makes significant improvement in the 
manufacturing domain. Various intelligence decision making tools were developed for 
decision making in EDM process (Pradhan and Biswas, 2010). In present days the 
artificial neural network (ANN) have developed as most flexible tool for modelling 
which is used in numerous manufacturing applications to predict the various desired 
performance measures (Dimla et al., 1997; Dini, 1997). Various neural network models 
were developed for EDM process parameter prediction and the compatible results were 
attained with the help of developed models (Tsai and Wang, 2001). Among the number 
of existing algorithms in neural network models, the Levenberg-Marquardt algorithm 
(trainlm) has the greatest convergence (Kao and Tarng, 1997; Panda and Bhoi, 2005; 
Malinov et al., 2001; Demuth and Beale, 2000; Wang et al., 2003). 

It is observed from the available literatures, that there are lack of investigation 
performed on multi-aspects optimisation of process variables using grey-based ANN 
approach by considering the performance measures namely MRR, surface roughness 
(SR), overcut (OC), circularity error and perpendicularity error for EDM process. In the 
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present article, an attempt has been taken to conduct investigation on the process 
parameters and to develop the multi aspects optimisation model using grey-ANN method 
to predict the multi performance characteristics. Taguchi-based grey approach is 
employed to determine the grey coefficient values. The grey relational coefficient (GRC) 
values have been used as input values to develop the ANN model. The multi performance 
index, grey relational grade (GRG) is predicted with the help of developed neural 
network model. 

2 Materials and methods 

Haste alloy C276 is a nickel-based superalloy which has excellent corrosion and chemical 
resistance. Because of its exceptional properties, the material has wider applications 
especially in digesters and bleach plants in paper industries, heat exchangers, sulphuric 
acid reactors, and chemical environments. Haste alloy C-276 is selected as work material 
in this present investigation and it is clamped inside of the machining chamber. EDM 
machine (Model EMS 5030) has been used for the experimentation for making through 
holes. Copper electrode is used as a tool for machining of Haste alloy C276 and kerosene 
is used as a di-electric medium. 

In traditional method of experimental design, more number of experimental runs are 
to be performed with selected process variables and levels. These kind of problems could 
be resolved by implementing Taguchi’s experimental design approach. Taguchi proposed 
a unique layout for conducting experiments called as Orthogonal Array (OA) and also to 
analyse the process variables with minimum number of experimental runs. Current, pulse 
on time and pulse off time are selected as input variables and MRR, surface roughness, 
overcut, form and orientation tolerance errors are considered as performance measures. 
The input process variables are selected based upon the available literature. The selected 
input process variables, levels and range of values are specified in Table 1. Based on the 
selected parameters and levels, an L27 OA have been opted for EDM drilling of haste 
alloy. 

Figure 2 Experimental setup for machining of haste alloy C-276 (see online version for colours) 
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Table 1 Input process parameters and levels 

Symbols Process variables 
Levels 

1 2 3 
A Current (A) 5 10 15 
B Pulse on Time (µs) 30 60 90 
C Pulse off time (µs) 3 6 9 

Figure 3 Tool used for machining of haste alloy C-276 (see online version for colours) 

 

Figure 4 Machined hole using EDM in haste alloy C-276 

 

Weight loss method is used to compute the MRR. Mitutoyo SJ 410 model is used for 
measuring the surface roughness. Overcut, form and orientation tolerance are measured 
by Helmel make Co-ordinate Measuring Machine (CMM), model 216-142. The 
experimental setup and tool used for machining are shown in Figure 2 and Figure 3 
respectively. The drilled hole using EDM is shown in Figure 4. The experiments were 
conducted as per L27 OA and the observations are presented in Table 2. 
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Table 2 Experimental Layout and measured responses 
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1 5 30 3 0.0435 0.30 0.8842 0.3487 0.6440 
2 5 30 6 0.0443 0.32 0.9029 0.3634 0.6821 
3 5 30 9 0.0459 0.32 0.9280 0.3753 0.7444 
4 5 60 3 0.0481 0.32 0.9404 0.3927 0.7546 
5 5 60 6 0.0490 0.32 0.9427 0.4033 0.7590 
6 5 60 9 0.0512 0.33 0.9449 0.4148 0.7961 
7 5 90 3 0.0519 0.34 1.1043 0.4248 0.9427 
8 5 90 6 0.0523 0.34 1.1956 0.4252 0.9948 
9 5 90 9 0.0526 0.35 1.3080 0.5163 0.8050 
10 10 30 3 0.0534 0.35 0.5389 0.2359 0.3740 
11 10 30 6 0.0540 0.36 0.5878 0.2413 0.3928 
12 10 30 9 0.0546 0.40 0.7334 0.2489 0.4039 
13 10 60 3 0.0563 0.40 0.7695 0.2744 0.4252 
14 10 60 6 0.0574 0.40 0.7829 0.2802 0.4354 
15 10 60 9 0.0581 0.40 0.8089 0.2817 0.4895 
16 10 90 3 0.0620 0.41 0.8398 0.2838 0.5104 
17 10 90 6 0.0636 0.41 0.8402 0.2961 0.5163 
18 10 90 9 0.0645 0.42 0.8681 0.3182 0.5922 
19 15 30 3 0.0651 0.45 0.1611 0.0795 0.0230 
20 15 30 6 0.0655 0.49 0.1884 0.1266 0.0457 
21 15 30 9 0.0662 0.50 0.2597 0.1579 0.1468 
22 15 60 3 0.0674 0.50 0.3311 0.1693 0.1935 
23 15 60 6 0.0678 0.50 0.3647 0.1909 0.2433 
24 15 60 9 0.0685 0.50 0.4549 0.1914 0.2628 
25 15 90 3 0.0749 0.52 0.4617 0.1994 0.2917 
26 15 90 6 0.0783 0.54 0.5029 0.2055 0.3150 
27 15 90 9 0.0812 0.56 0.5368 0.2143 0.3490 

2.1 Grey relational analysis 

GRA is a multi-criteria decision making method which used to solve the multi aspect 
optimisation problems and it is an effective method for various machining processes 
(Ahilan et al., 2009). 
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Step 1 The preferred quality aspects for rate of material removal is maximum the 
better; for normalising this desired performance characteristic equation (1) has 
been employed. 

( )
( ) ( )
pq pq

pq
pq pq

Z Min X
Y

Max X Min X
 − 

=   − 
 (1) 

The preferred quality aspects for surface roughness, overcut, form and 
orientation tolerances (circularity error and perpendicularity error) are minimum 
the better; for normalising this desired performance characteristics equation (2) 
has been employed. 

( )
( ) ( )

pq pq
ij

pq pq

Max X X
Y

Max X Min X
 − 

=   − 
 (2) 

where Xpq is the output variables, min (Xpq) is the least values of Xpq and max 
(Xpq) is the highest values of Xpq, p is the output variables and ‘q’ is the 
experimental run number. Basically maximised normalised values are indicators 
of better the performance characteristics. 

Step 2 The maximum values from the normalisation irrespective of response process 
variables, experimental runs are calculated by equation (3). 

( )pqR Max Y=  (3) 

Step 3 The complete variance among the reference sequence value R and each value 
from normalisation is evaluated by equation (4): 

pq pqY RΔ = −  (4) 

where R is the expected sequence, Ypq is the comparability sequence and ‘∆pq is 
the deviation sequence of R and Ypq. 

Step 4 The grey relation coefficient (GRC) ξpq for each of the normalised values is 
computed using the equation (5) and the values are shown in Table 3. 

( ) ( )
( )

pq pq
pq

pq pq

Min ζMax
ξ

ζMax
 Δ + Δ 

=   Δ + Δ 
 (5) 

where ζ is the differentiating coefficient, ζ∈ [0, 1] and 0.5 is the commonly 
accepted value. Larger the values of GRC means the relational degree will be 
influential. 

Step 5 The GRG for each experimental run is calculated as follows in equation (6): 

1

n
pqi

γ

ξ
Y

n
==   (6) 

where n is the number of response variables. 
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Table 3 Calculated GRC and GRG values for EDM of haste alloy C276 

S. no 
GRC and GRG values 

MRR Surface 
roughness Overcut Circularity 

error 
Perpendicularity 

error GRG Rank 

1 0.3333 1.0000 0.4423 0.5379 0.5005 0.5628 16 
2 0.3381 0.8667 0.4360 0.4857 0.5000 0.5253 20 
3 0.3481 0.8667 0.4278 0.4606 0.4985 0.5203 21 
4 0.3628 0.8667 0.4239 0.4596 0.4402 0.5106 22 
5 0.3692 0.8667 0.4232 0.4443 0.4366 0.5080 23 
6 0.3859 0.8125 0.4225 0.4343 0.4333 0.4977 24 
7 0.3915 0.7647 0.3781 0.4205 0.4326 0.4775 25 
8 0.3948 0.7647 0.3566 0.3923 0.3443 0.4506 26 
9 0.3973 0.7222 0.3333 0.3333 0.3333 0.4239 27 
10 0.4041 0.7222 0.6028 0.7440 0.7871 0.6520 10 
11 0.4093 0.6842 0.5734 0.7372 0.7483 0.6305 11 
12 0.4147 0.5652 0.5005 0.7225 0.7456 0.5897 12 
13 0.4309 0.5652 0.4852 0.7205 0.7325 0.5869 13 
14 0.4420 0.5652 0.4798 0.7155 0.6974 0.5800 14 
15 0.4493 0.5652 0.4696 0.6775 0.6771 0.5677 15 
16 0.4954 0.5417 0.4580 0.6592 0.6097 0.5528 17 
17 0.5171 0.5417 0.4578 0.6379 0.5803 0.5470 18 
18 0.5302 0.5200 0.4479 0.6365 0.5379 0.5345 19 
19 0.5393 0.4643 1.0000 1.0000 1.0000 0.8007 1 
20 0.5456 0.4063 0.9546 0.9673 0.9942 0.7736 2 
21 0.5569 0.3939 0.8533 0.9520 0.9711 0.7454 3 
22 0.5773 0.3939 0.7713 0.9270 0.9127 0.7164 4 
23 0.5845 0.3939 0.7380 0.9261 0.8904 0.7066 5 
24 0.5975 0.3939 0.6612 0.9066 0.8356 0.6790 9 
25 0.7495 0.3714 0.6561 0.8871 0.8187 0.6966 6 
26 0.8667 0.3514 0.6266 0.8125 0.8162 0.6947 7 
27 1.0000 0.3333 0.5492 0.7817 0.7932 0.6915 8 

The GRG γj represents the closeness of correlation between the reference sequence or 
ideal sequence and the comparative sequence. If higher value of GRG is attained, then the 
corresponding set of process variable is closer to the most favourable combination for 
obtaining better multi performance characteristics. 

2.2 Evolution of proposed grey-based ANN model 

The use of artificial intelligence tool makes remarkable changes in most of engineering 
domains in recent years. Optimisation and modelling are essential to control and 
understanding of any process. Accurate control is a requirement to accomplish superior 
quality and increase in productivity. Several researchers made an effort with the help of 
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statistical techniques to build a model from the data which were obtained from 
experiments. ANN has a significant part in learning the linear and nonlinear problems in 
various engineering fields. On the other hand, ease of creating network models is one of 
the advantages of employing ANN (Sapuan and Mujtaba, 2009; Dimla et al., 1997; Dini, 
1997). The MATLAB toolbox is used for developing the neural network model. A 
network model having input layer with five numbers of neurons and an output layer with 
single neuron has been developed. The quantity of hidden layers in the network and the 
number of neurons in the layers were decided by trial and error approach. The developed 
ANN structure for prediction of GRG is shown in Figure 5. 

Figure 5 Structure of developed neural network model 

 

Training of performance measure (output) is a vital stage to predict the desired process 
parameter accurately. A model of feed forward back propagation (FFBP) with 
Levenberg-Marquardt algorithm-based network was trained (Kao and Tarng, 1997; Panda 
and Bhoi, 2005; Malinov et al., 2001; Demuth and Beale, 2000; Wang et al., 2003). 
Required data for testing and training are attained from the experiments. The learning 
function is gradient descent algorithm with momentum weight and bias learning function. 
The trials used for ANN prediction shown in Table 4. 

Trials are performed to obtain the best mean correlation coefficient value. The 
structure with multi-layer network (5-20-18-1) produces best mean correlation coefficient 
and the values are shown in Figure 6. Therefore, this developed structure could be 
employed for the prediction of GRG. 
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Table 4 Trials of ANN prediction for various network architectures 

Trial 
no 

Network 
structure 

R values 
Training Validation Testing All 

1 5-12-14-1 1 0.9997 0.9833 0.9961 
2 5-14-16-1 1 0.9847 0.9731 0.9920 
3 5-16-18-1 1 0.9963 0.9956 0.9973 
4 5-18-20-1 1 0.9951 0.9235 0.9804 
5 5-20-20-1 1 0.9852 0.9956 0.9980 
6 5-12-16-1 1 0.9966 0.9950 0.9978 
7 5-12-18-1 1 0.9751 0.8857 0.9774 
8 5-12-20-1 1 0.9604 0.9540 0.9648 
9 5-14-18-1 1 0.9771 0.9835 0.9882 
10 5-14-12-1 1 0.9954 0.9782 0.9955 
11 5-14-20-1 1 0.7508 0.9973 0.9575 
12 5-16-12-1 1 0.9998 0.9960 0.9987 
13 5-16-14-1 1 0.9825 0.9995 0.9946 
14 5-16-16-1 1 0.8398 0.9051 0.9715 
15 5-16-20-1 1 9.9819 0.9739 0.9724 
16 5-18-12-1 1 0.9889 0.9980 0.9979 
17 5-18-14-1 1 0.9959 0.9980 0.9985 
18 5-18-16-1 1 0.6958 0.9549 0.9264 
19 5-18-18-1 1 0.9972 0.9952 0.9986 
20 5-18-20-1 1 0.9951 0.9235 0.9804 
21 5-20-12-1 1 0.9963 0.9952 0.9989 
22 5-20-14-1 1 0.4950 0.92997 0.8562 
23 5-20-16-1 1 0.9953 0.9979 0.9972 
24 5-20-18-1 1 0.9998 0.9919 0.9981 
25 5-20-20-1 1 0.9858 0.9956 0.9980 

3 Results and discussion 

The exploration on EDM of haste alloy C-276 using Taguchi-based grey approach, 
analysis of variance (ANOVA) are discussed in this section. The influence of selected 
input process variables on multi performance machining characteristics and development 
of grey-based ANN model are detailed. 
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Figure 6 Regression plot for the developed network (see online version for colours) 

 

3.1 Influence of process parameters on MRR 

The removal rate of material is categorised under higher the better criterion. The main 
effect plot is obtained for the MRR and it is shown in Figure 7. It is depicted from the 
illustration, that the MRR is increased by increase in level of current, pulse on time and 
pulse off time. The increase of applied current will have the possibility of increasing the 
discharge energy pulses and hence there is an improvement in the rate of material 
removal. The increase in levels of pulse on time results in applying the same amount of 
heat flux for a long time which causes an increment of heat. The increased heat is 
transferred to the work material as the plasma channel expands thus results in an 
improvement in the rate of material removal (Pradhan and Biswas, 2011). 
Table 5 Response table for MRR – EDM of haste alloy 

Levels Current (A) Pulse on time (µs) Pulse off time (µs) 
1 0.04876 0.05472 0.05807 
2 0.05821 0.05820 0.05913 
3 0.07055 0.06459 0.06031 
Delta 0.02179 0.00987 0.00224 
Rank 1 2 3 



   

 

   

   
 

   

   

 

   

    Optimisation of spark erosion machining process parameters 13    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Main effect plot for MRR (see online version for colours) 

 

Taguchi’s analysis is performed and the results are presented in Table 5. The optimum 
machining condition for obtaining higher MRR is determined as A3B3C3. It is make 
known from the investigation that the applied current is the important process variable 
which influences the MRR. 

3.2 Influence of process parameters on surface roughness 

In EDM, the surface roughness is categorised under smaller the better criterion. The main 
effect plot is obtained for the surface roughness and it is presented in Figure 8. It is 
perceived from the illustration, that the roughness of the machined surface is increased 
with increasing in applied current, pulse on time and pulse off time. It is observed from 
the experimental analysis that the increase of applied current results in the increase of 
heat energy discharge at the work zone. At this zone, there is a formation of molten metal 
pool and overheated. Continuous discharges result in craters thus increases the roughness 
of the machined surface. As the rate of material removal is achieved by the craters 
formation because of sparks, it is that the larger size in crater creates the rough surface 
during machining. So the size of the crater depends on the energy per spark has the 
ability of controlling the surface quality of work material. The roughness of electrically 
discharged machine surface increases with the increase of energy pulse which results in 
higher values of surface roughness (Pradhan and Biswas, 2011). 
Table 6 Response table for surface roughness – EDM of haste alloy 

Levels Current (A) Pulse on time (µs) Pulse off time (µs) 
1 0.3267 0.3878 0.3989 
2 0.3944 0.4078 0.4089 
3 0.5067 0.4322 0.4200 
Delta 0.1800 0.0444 0.0211 
Rank 1 2 3 
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Figure 8 Main effect plot for surface roughness (see online version for colours) 

 

Taguchi’s analysis is performed and the results are exhibited in Table 6. The optimum 
machining conditions for obtaining minimised surface roughness is determined as 
A1B1C1. It is make known from the analysis that the current is the important parameter 
which has significant impact on surface roughness in EDM of haste alloy C276. 

3.3 Influence of process parameters on overcut 

In EDM, the overcut is categorised under smaller the better criterion. The main effect plot 
is obtained for the overcut and it is presented in Figure 9. It is witnessed from the 
illustration, that the overcut value is getting decrease with increase of current and it is 
increased with escalation in pulse on and pulse off time. If the removal of debris not done 
properly, it results in secondary sparking in the machining zone and at the side walls of 
the machined hole. This phenomenon become predominant while the energy discharge is 
more and results in the deep craters and hence increases the overcut. When the pulse 
duration increases, the rate of material removal is more within the short period of time 
and there are some difficulties with debris to move out from the inter electrode gap which 
has the ability of causing secondary spark results in decreased dimensional accuracy. 
Table 7 Response table for overcut – EDM of haste alloy 

Levels Current (A) Pulse on time (µs) Pulse off time (µs) 
1 1.0168 0.5760 0.6701 
2 0.7522 0.7044 0.7009 
3 0.3624 0.8508 0.7603 
Delta 0.6544 0.2748 0.0902 
Rank 1 2 3 

Taguchi’s analysis is performed and the results are exhibited in Table 7. The optimum 
machining conditions for obtaining minimised overcut is determined as A3B1C1. It is 
make known from the analysis that the current is the important parameter which 
influences the overcut in EDM of haste alloy C276. 
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Figure 9 Main effect plot for overcut (see online version for colours) 

 

3.4 Influence of process parameters on form and orientation tolerance errors 

Circularity and perpendicularity are known as the form and orientation tolerances. The 
errors of these form and orientation tolerance are the important performance measures in 
any unconventional machining processes. The form and orientation tolerance errors of 
machined surface plays a significant role in mechanical design and quality control of a 
geometrical product. The effective measurement and efficient evaluation of these 
tolerances as performance measure needs attention. The response graph for the form and 
orientation tolerance errors in EDM of haste alloy C-276 is shown in Figure 10. It is 
conspicuous from the illustration that the form and orientation tolerance error is 
decreased with applied current. However, it is increased with increase in pulse on time 
and pulse off time. The presence of dielectric fluid in the work spot should effectively 
remove the debris, otherwise secondary sparking will happen and hence there is the less 
possibility of obtaining the accurate circular hole. When the pulse duration increases the 
rate of material removal is more within the short period of time and there are some 
difficulties with debris to move out from the inter electrode gap which has the ability of 
causing secondary spark results in increased possibility of form and tolerance errors. 
Table 8 Response table for form and orientation tolerance error – EDM of haste alloy 

Levels 
Circularity error  Perpendicularity error 

Current (A) Pulse on 
time (µs) 

Pulse off 
time (µs)  Current (A) Pulse on 

time (µs) 
Pulse off 
time (µs) 

1 0.5957 0.2557 0.2834  0.5418 0.2003 0.2503 
2 0.2441 0.3009 0.3132  0.2196 0.2666 0.2869 
3 0.1070 0.3902 0.3501  0.0811 0.3755 0.3053 
Delta 0.4886 0.1344 0.0667  0.4606 0.1752 0.0549 
Rank 1 2 3  1 2 3 

Taguchi’s analysis is performed and the results are exhibited in Table 8. The optimum 
machining conditions for obtaining minimised form and orientation tolerance error is 
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determined as A3B1C1. It is make known from the analysis that the current is the 
important parameter which influences form and orientation tolerances in EDM of haste 
alloy C276. 

Figure 10 Main effect plot for form and orientation tolerance errors (see online version  
for colours) 

  

Figure 11 SEM image of the spark erosion machined haste alloy C-276 work surface 

 

The SEM micrograph of the spark erosion machined haste alloy C-276 shown in  
Figure 11. The micrograph illustrates the machined surface didn’t encountered with any 
adverse change. 

3.5 ANOVA for desired performance measures 

ANOVA is a statistical analysis tool used to determine the significance of process 
parameters on the performance measures at 95% confidence level which is used for 
various nontraditional machining process such EDM (Singh et al., 2012; Sivasankar  
et al., 2013) and it is computed using statistical software Minitab 16.0. 
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Table 9 ANOVA for EDM of haste alloy C276 

Source DF Seq SS Adj SS Adj MS F P 
MRR (g/min) 

Current (A) 2 0.002149 0.002149 0.001075 388.93 0 
Pulse on (µs) 2 0.000451 0.000451 0.000226 81.6 0 
Pulse off (µs) 2 2.27E-05 2.27E-05 1.13E-05 4.1 0.032 
Error 20 5.53E-05 5.53E-05 2.8E-06 --- --- 
Total 26 0.002678 --- --- --- --- 

Surface roughness (Ra) (microns) 
Current (A) 2 0.148763 0.148763 0.074381 480.45 0 
Pulse on (µs) 2 0.008919 0.008919 0.004459 28.8 0 
Pulse off (µs) 2 0.002007 0.002007 0.001004 6.48 0.007 
Error 20 0.003096 0.003096 0.000155 --- --- 
Total 26 0.162785 --- --- --- --- 

Overcut (mm) 
Current (A) 2 1.95065 1.95065 0.97533 334.18 0 
Pulse on (µs) 2 0.34025 0.34025 0.17012 58.29 0 
Pulse off (µs) 2 0.03783 0.03783 0.01892 6.48 0.007 
Error 20 0.05837 0.05837 0.00292 --- --- 
Total 26 2.3871 --- --- --- --- 

Circularity error (mm) 
Current (A) 2 1.1434 1.1434 0.5717 195.3700 0 
Pulse on (µs) 2 0.0842 0.0842 0.0421 14.3900 0 
Pulse off (µs) 2 0.0201 0.0201 0.0101 3.4400 0.052 
Error 20 0.0585 0.0585 0.0029 --- --- 
Total 26 1.3063 --- --- --- --- 

Perpendicularity error (mm) 
Current (A) 2 1.0056 1.0056 0.5028 159.5900 0 
Pulse on (µs) 2 0.1409 0.1409 0.0705 22.3600 0 
Pulse off (µs) 2 0.0141 0.0141 0.0071 2.2400 0.133 
Error 20 0.0630 0.0630 0.0032 --- --- 
Total 26 1.2236 --- --- --- --- 

The ANOVA analysis for MRR, surface roughness, overcut, form and orientation 
tolerance errors in electrical discharge drilling of haste alloy C276 are presented in  
Table 9. From the ‘P’ values, it is observed from the analysis that the current is the 
significant process variable for MRR, surface roughness, overcut, form and orientation 
tolerances in electrical discharge drilling of haste alloy C276. 
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3.6 Performance analysis of developed neural network model 

Numerical deviation among the experimental values and the predicted values from the 
developed model is known as error. The prediction capability of developed model is 
tested by calculating the prediction error using the following equation (7): 

1

1Mean Absolute Percentage Error (%) 100
n V V
i V

E P
n E=

−= ∗  (7) 

The root mean square error (RMSE) and the correlation coefficient value for evaluating 
the prediction model is obtained by the equations (8), and (9): 

( )2

1
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V Vi
E P

n =
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P E
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−
= −


 (9) 

where EV and PV are the experimental values and predicted values respectively, ‘n’ is the 
number of observations. The performance analysis of developed model is presented in 
Table 10. 
Table 10 Performance analysis of developed models for EDM of haste alloy C276 

Performance measures Error values of the developed ANN model 
Mean absolute percentage error (MAPE) 0.6263 
Root mean square error (RMSE) 0.0086 
Mean absolute error (MAE) 0.006263 
Correlation coefficient 0.9981 

3.7 Comparison of calculated GRG values with predicted values by ANN model 

The combination of grey method with any advanced decision making tool will improve 
the performance of determining the optimum multiple performance characteristics 
(Prabhu and Vinayagam, 2013). The major objective of the current investigation is to 
develop a neural network model for prediction of GRG. The GRA has been performed 
(Uyyala et al., 2014) and the calculated GRC values are given as input to the developed 
neural network model. Based on the correlation coefficient, the ability of performance of 
each network has been investigated. In order to establish the best possible configuration 
of neural network, the amount of error convergence was investigated by varying the 
quantity of hidden layers and neurons in the hidden layers. It is concluded from the result 
shown in Table 4 that the network having hidden layers of two numbers and (20–18) 
neurons generates the greatest performance for the each output parameters based on trial 
and error approach. Developed network was trained with Lavenberg-Marquardt algorithm 
(Sapuan and Mujtaba, 2009) and the mean correlation coefficient for the developed 
network is 0.9981. Thus, the network having two layers with (20–18) neurons has been  
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preferred as the best possible network for prediction purpose. It is also monitored that the 
network performance can be considerably enhanced by enlarging the quantity of neurons 
in the hidden layer. Table 11 illustrates comparison among the experimental values and 
the values predicted by developed network model. It clearly depicts that the developed 
neural network predicts the parameters with very less amount of error. The comparison 
among calculated GRG values and the values predicted by ANN model are illustrated in 
Figure 12 and it is revealed that there is an extremely close relationship between the 
experimental values and predicted values. 
Table 11 Comparison of calculated GRG and predicted GRG values 

S. no 
GRGs 

Calculated Predicted by ANN 
1 0.5628 0.5628 
2 0.5253 0.5253 
3 0.5203 0.5240 
4 0.5106 0.5106 
5 0.5080 0.5108 
6 0.4977 0.4977 
7 0.4775 0.4660 
8 0.4506 0.4506 
9 0.4239 0.4239 
10 0.6520 0.652 
11 0.6305 0.6305 
12 0.5897 0.5897 
13 0.5869 0.5869 
14 0.5800 0.5723 
15 0.5677 0.5677 
16 0.5528 0.5487 
17 0.5470 0.5470 
18 0.5345 0.5662 
19 0.8007 0.7775 
20 0.7736 0.7736 
21 0.7454 0.7454 
22 0.7164 0.7164 
23 0.7066 0.7066 
24 0.6790 0.6943 
25 0.6966 0.6966 
26 0.6947 0.6947 
27 0.6915 0.6915 
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Figure 12 Comparison of calculated GRG values with predicted ANN GRG values (see online 
version for colours) 

 

4 Conclusions 

Investigations on EDM of haste alloy C-276 and developing a model with high precision 
for the prediction of GRG is most important for manufacturing domain. In this present 
investigation, an experimental investigation and grey-based ANN model is developed to 
predict the ANN-GRG. 

• The desired performance measures are attained from the trials which are conducted 
on EDM process as per Taguchi’s L27 orthogonal array. 

• The best possible set of machining variables for the desired output variables are 
ascertained by Taguchi’s approach. 

• A statistical analysis has been employed to ascertain the significance of the 
independent variables on desired performance measures of EDM of haste alloy. It is 
conspicuous from the ANOVA that the applied current is the most influencing factor 
for all the desired performance measures. 

• The grey relational co-efficient values are given as input to the developed neural 
network model and the ANN-GRG values are predicted from the developed neural 
network model. 

• From the comparative analysis, it is observed that the developed grey-ANN model 
predicts the desired performance measure accurately. It is concluded from the 
investigation, that the proposed ANN-GRG model has been employed successfully 
and it has the capability of reducing the uncertainty among the data which results in 
better prediction of performance characteristics. 
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• The assessment outcomes prove that the proposed grey-based ANN approach is an 
effective tool and it can be employed for various machining processes with multi 
performance machining characteristics. 
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