A new approach for obtaining the dynamic balancing conditions in serial mechanisms

André Garnier Coutinho* and Tarcisio Antonio Hess Coelho

Department of Mechatronics and Mechanical Systems Engineering, Escola Politecnica, University of Sao Paulo, Brazil
Email: andre.garnier.coutinho@usp.br
Email: tarchess@usp.br

*Corresponding author

Abstract: Adaptive balancing means that the mechanical structure of the manipulator is modified in order to achieve the decoupling of dynamic equations. This work deals with a systematic formulation for the adaptive balancing. Basically, two traditional balancing techniques are employed here: the addition of counterweight and counter-rotating disks coupled to the moving links. In addition, the feasibility of the dynamic decoupling for three distinct types of serial manipulators is discussed regarding the achievement of such balancing and the complexity level of the modified mechanical structure. The balancing conditions are developed here for 3-dof spatial and planar open-loop kinematic chain mechanisms, whose topologies are composed of revolute and prismatic joints.

Keywords: adaptive balancing; balancing conditions; design; dimensional synthesis; dynamic balancing; dynamic decoupling; Robotics; serial mechanisms; spatial mechanisms.

Biographical notes: André Garnier Coutinho is currently pursuing his PhD in Mechanical Engineering from Polytechnic School of Engineering of the University of São Paulo (EPUSP), Brazil. He received his BEng in Mechanical Engineering from the Polytechnic School of Engineering at the University of São Paulo (EPUSP), Brazil in 2013. His main areas of research interest are multibody dynamics, parallel robots and nonlinear control.

Tarcisio Antonio Hess Coelho is an Associate Professor at the University of São Paulo since 2005. He received his BEng, MEng and PhD in Mechanical Engineering from the Polytechnic School of Engineering at the University of São Paulo (EPUSP), Brazil in 1987, 1990 and 1997, respectively. From 2001–2002, he was a Post-Doctoral Fellow at Stanford University, USA. He is also a member of two IFToMM Technical Committees (Mechatronics and Robotics, Multibody Dynamics). His main areas of research interest are parallel robots, education and biomechanics.
1 Introduction and literature review

Balancing can be considered as an important issue related to the design of any kind of mechanical system in general, and also serial manipulators, in particular. As a matter of fact, the performance of open-loop kinematic chain mechanisms associated to specific applications depends on the choice of the balancing method, namely, either static Wang and Gosselin (2000) or dynamic Wu and Gosselin (2005), either passive Van der Wijk (2013); Wu and Gosselin (2005); Gosselin et al. (2004); Wang and Gosselin (2000, 1999); Alici and Shirinzadeh (2003, 2006); Dehkordi et al. (2012); Russo, Sinatra and Xi (2005); Agrawal and Fattah (2004) or active Arakelian and Smith (2008); Seo et al. (2013); Wang et al. (2013); Briot, Arakelian and Le Baron (2012); Coelho, Yong and Alves (2004); Moradi, Nikoobin and Azadi (2010).

Moreover, Coelho et al. Coelho, Yong and Alves (2004), Moradi et al. Moradi, Nikoobin and Azadi (2010) and Arakelian and Sargsyan Arakelian and Sargsyan (2012) use the adaptive balancing to achieve the decoupling of dynamic equations for open-loop kinematic chain mechanisms. Consequently, this action simplifies the control of manipulators because the actuators can be controlled independently. The necessary modifications comprise the addition of either counterweights, or counter-rotating disks or even both to the original kinematic chain of the manipulator. Consequently, the terms associated to gravitational, centripetal and Coriolis efforts are completely eliminated from the dynamic equations. As a matter of fact, the effective inertias for all the actuator axes are constant and the mathematical expressions of the driving torques/forces become rather simple. One of the main advantages of this approach concerns the reduction of computing time for a closed-loop control of manipulators. Such reduction is really significant and it constitutes in a great benefit for real-time applications.

The contributions of this work are the following: to present a systematic formulation to obtain the balancing conditions for the adaptive balancing, to discuss the feasibility of the dynamic decoupling for three distinct types of serial manipulators, not only in terms of the possibility to achieve such balancing but also regarding the increase of the complexity level of the modified mechanical structure. The analysed manipulators correspond to 3-dof spatial and planar open-loop kinematic chain, whose topologies are composed of revolute and prismatic joints.

This work is organised as follows. Section 2 describes the proposed formulation, while Section 3 deals with the application of the formulation to three types of serial manipulators. Finally, the conclusions are drawn in Section 4.

2 Formulation

2.1 Dynamic model

The dynamic model of a serial mechanism can be written as follows:

$$
\dot{m}(\dot{q})\ddot{q} + \psi(q, \dot{q}) + g(q) = u
$$

where q is a column-matrix of independent generalised coordinates, whose entries are relative displacements of the joints, and u is a column-matrix of the generalised actuators’ efforts in the directions of the independent quasi-velocities $\dot{q} = \dot{q}$.

A new approach for obtaining the dynamic
In order to perform the dynamic balancing of a serial mechanism, it is required to obtain the dynamic model of the unbalanced mechanism. Once in a serial mechanism it is possible to express all the absolute velocities of the links’ centres of mass and all the absolute angular velocities of the links as functions of q^a and \dot{q}^a, the dynamic model can be obtained without major difficulties by using analytical mechanics techniques, like Lagrange Chen, Chen and Tsai (1990) and Kane Kane and Levinson (1985) formalisms, Orsino’s method Orsino and Coelho (2015), and Boltzmann-Hamel equations Altuzarra et al. (2015), allied to programs or libraries of programming languages that are capable of using symbolic manipulation, such as Mathematica and SymPy.

2.2 Static balancing

After obtaining the dynamic model, the static balancing is performed by determining the links’ centres of mass positions that annul the term g^a. That can be achieved in mechanisms whose revolute joints axes are in any direction and whose prismatic joints axes are orthogonal to the gravity. The positioning of the centres of mass is done mechanically by extending the mechanism’s bars and adding counterweights.

2.3 Dynamic balancing

The dynamic balancing is performed by attaching counter-rotating disks to the statically balanced mechanism. One can take into account this structural modification in the dynamic model by using the coupling subsystems technique of Orsino’s method Orsino, Coutinho and Coelho (2016); Orsino and Coelho (2015).

Let \mathcal{M}_0 be a mechanical subsystem composed of a statically balanced serial mechanism, whose equation of motion is given by (1), with $g^a = 0$. Let \mathcal{M}_i be a mechanical subsystem composed of a counter-rotating disk that will be coupled to the mechanism, whose equation of motion is given by:

$$m_i \ddot{q}^a_i + v^a_i + g^a_i = u_i$$

(2)

where q^a_i is a set of independent quasi-velocities, whose elements are non-null components of the absolute angular velocity vector of the disk, expressed in a reference frame fixed to the disk, and $v^a_i = g^a_i = u_i = 0$. In this model, only the rotational effect of the disk inertias is considered. The translational effects of the disk inertias are taken into account in the model of bar where the disk is attached.

By assuming that n counter-rotating disks will be attached to the mechanism, the following definitions are made:

$$M' = \begin{bmatrix} M^a & 0 \ldots 0 \\ 0 & M^a & \ldots 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & M^a_n \end{bmatrix}$$

(3)

$$v' = \begin{bmatrix} v^a_T & v^a_1 T & \ldots & v^a_n T \end{bmatrix}^T$$

(4)

$$g' = \begin{bmatrix} g^a_T & g^a_1 T & \ldots & g^a_n T \end{bmatrix}^T$$

(5)
A new approach for obtaining the dynamic

\[p^o = \begin{bmatrix} p_1^o T \ldots p_n^o T \end{bmatrix}^T \] (6)

\[p = \begin{bmatrix} p^o T \ p^o T \end{bmatrix}^T \] (7)

Let \(p^o \) be the vector \(p^o \) expressed as function of \(q^o \in p^o \), i.e.,

\[p^o = p^o(q^o, p^o) \] (8)

The kinematic constraints matrix is defined as

\[C = \begin{bmatrix} \frac{\partial p^o}{\partial q} \\ \frac{\partial p^o}{\partial p} \end{bmatrix} \] (9)

The dynamic model of the serial mechanism coupled with the counter-rotating disks is given by

\[\ddot{q}^i = \dot{m}'(q^o)\dot{q}^o + \dot{v}'(q^o, \dot{q}^o) + g'(q^o) = u \] (10)

where

\[\dot{m}' = C^T \dot{m}' C \] (11)

\[\dot{v}' = C^T (\dot{m}' \dot{C} \dot{q}^o + \dot{v}) \] (12)

\[g' = C^T g' \] (13)

The dynamic balancing conditions are achieved by determining the system parameters that make \(\ddot{m}' \) diagonal and \(\dot{v}' \) null.

3 Applying the technique

In this section, the proposed formulation will be applied in three different 3-dof serial mechanisms. First, some definitions, valid for these mechanisms, are required:

\[\dot{m}' = \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{12} & D_{22} & D_{23} \\ D_{13} & D_{23} & D_{33} \end{bmatrix} \] (14)

\[\dot{v}' = \begin{bmatrix} D_{111} & D_{112} & D_{113} \\ D_{121} & D_{122} & D_{123} \\ D_{131} & D_{132} & D_{133} \end{bmatrix} \begin{bmatrix} \dot{q}_1^o \\ \dot{q}_2^o \\ \dot{q}_3^o \end{bmatrix} + 2 \begin{bmatrix} D_{112} & D_{113} & D_{123} \\ D_{212} & D_{213} & D_{223} \\ D_{312} & D_{313} & D_{323} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \dot{q}_2 \\ \dot{q}_2 \dot{q}_3 \end{bmatrix} + \begin{bmatrix} D_{312} & D_{313} & D_{323} \end{bmatrix} \begin{bmatrix} \dot{q}_2 \dot{q}_3 \end{bmatrix} \] (15)

\[g' = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}^T \] (16)

\[q^o = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}^T \] (17)

\[u = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T \] (18)

In order to employ the traditional notation, \(q_i = \theta_i \) and \(u_i = \tau_i \) for revolute joints, and \(q_i = d_i \) and \(u_i = f_i \) for prismatic joints.
A.G. Coutinho and T.A.H. Coelho

The Denavit-Hartenberg convention is used here not only to define the coordinate system in each link, but also to enumerate the links and joints of the mechanism.

3.1 3-dof RRR planar serial mechanism

The entries of $g^\#$ for the unbalanced mechanism are given by

$$
\begin{align*}
D_1 &= g[(m_1 l_{g1} + m_2 l_1 + m_3 l_1) c(\theta_1) + (m_2 l_{g2} + m_3 l_2) c(\theta_1 + \theta_2) + m_3 l_{g3} c(\theta_1 + \theta_2 + \theta_3)] \\
D_2 &= g[(m_2 l_{g2} + m_3 l_2) c(\theta_1 + \theta_2) + m_3 l_{g3} c(\theta_1 + \theta_2 + \theta_3)] \\
D_3 &= g[m_3 l_{g3} c(\theta_1 + \theta_2 + \theta_3)]
\end{align*}
$$

(19)

By performing the static balancing,

$$
\begin{align*}
D_1 &= 0 \\
D_2 &= 0 \\
D_3 &= 0
\end{align*}
\Rightarrow
\begin{align*}
l_{g1} &= -\frac{l_1 (m_2 + m_3)}{m_1} \\
l_{g2} &= -\frac{l_2 m_3}{m_2} \\
l_{g3} &= 0
\end{align*}
$$

(20)

Substituting (20) in the mechanism model, the terms of the dynamic model of the statically balanced mechanism are obtained

$$
\begin{align*}
D_{11} &= J_{z1} + J_{z2} + J_{z3} + m_2 l_1^2 + m_3 l_1^2 + l_1^2 + \frac{l_2^2 (m_2 + m_3)^2}{m_1} + \frac{l_3^2 m_3^2}{m_2} \\
D_{22} &= J_{z2} + J_{z3} + m_3 l_2^2 + \frac{l_2^2 m_3^2}{m_2} \\
D_{33} &= J_{z3} \\
D_{12} &= D_{21} \\
D_{13} &= D_{23} = D_{33} \\
v^\# &= 0 \\
g^\# &= 0
\end{align*}
$$

(21)

To perform the dynamic balancing, four counter-rotating disks are coupled to the mechanism, as shown in Figure 1. Once the disks rotate in a single plane, their corresponding dynamic models are as follows:

$$
\begin{align*}
\gamma^\#_i &= [J_{z1+i}] ; \quad \omega^\#_i = [\omega_{z1+i}] , \quad i = 1, 2, 3, 4
\end{align*}
$$

(22)

The counter-rotating disks 1 and 2 (rigid bodies 4 and 5) are coupled to link 1. The angular displacement of disk 1 with respect to link 1 is θ_2, due to the belt transmission of the motor 2 motion, while the angular displacement of disk 2 with respect to link 1 is $\beta \theta_2$, with $\beta < 0$, due to the gear transmission of disk 1 motion.

The counter-rotating disks 3 and 4 (rigid bodies 6 and 7) are coupled to link 2. The angular displacement of disk 3 with respect to link 2 is θ_3, due to the belt transmission of the motor 3 motion, while the angular displacement of disk 4 with respect to link 2 is $\gamma \theta_3$, with $\gamma < 0$, due to the gear transmission of disk 3 motion.
A new approach for obtaining the dynamic

Figure 1 Dynamically balanced RRR planar serial mechanism

Thus, the following quasi-velocities constraints are obtained:

\[
\begin{align*}
\omega_{z4} &= \omega_{z1} + \dot{\theta}_2 \\
\omega_{z5} &= \omega_{z1} + \beta \dot{\theta}_2 \\
\omega_{z6} &= \omega_{z2} + \dot{\theta}_3 \\
\omega_{z7} &= \omega_{z2} + \gamma \dot{\theta}_3
\end{align*}
\Rightarrow
\begin{align*}
\dot{\omega}_{z4} &= \dot{\theta}_1 + \dot{\theta}_2 \\
\dot{\omega}_{z5} &= \dot{\theta}_1 + \beta \dot{\theta}_2 \\
\dot{\omega}_{z6} &= \dot{\theta}_1 + \dot{\theta}_2 + \dot{\theta}_3 \\
\dot{\omega}_{z7} &= \dot{\theta}_1 + \dot{\theta}_2 + \gamma \dot{\theta}_3
\end{align*}
\Rightarrow
\begin{pmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\dot{\theta}_3
\end{pmatrix}
(23)

\[
C = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
(24)
\]
By applying (21), (22) and (24) in (11), (12) and (13), the mechanism’s statically balanced model coupled with the counter-rotating disks is obtained:

\[
\begin{align*}
D'_{11} &= D_{11} + J_{z4} + J_{z5} + J_{z6} + J_{z7} \\
D'_{22} &= D_{22} + J_{z4} + J_{z5} \beta^2 + J_{z6} + J_{z7} \\
D'_{33} &= D_{33} + J_{z6} + J_{z7} \gamma^2 \\
D'_{12} &= D_{12} + J_{z4} + J_{z5} \beta + J_{z6} + J_{z7} \\
D'_{13} &= D_{13} + J_{z6} + J_{z7} \gamma \\
D'_{23} &= D'_{13} \\
\varphi' &= 0
\end{align*}
\]
To perform the dynamic balancing, the values of β and γ as functions of the mechanism’s parameters that makes Φ' diagonal are found. Thus,

$$
\begin{align*}
D'_{12} &= 0 \\
D'_{13} &= 0
\end{align*}
\Rightarrow \begin{align*}
\beta &= -\frac{J_{z_5} + J_{z_6} + m_3 l_2^2 + \frac{3 l_2^2}{m_2}}{J_{x_5}} \\
\gamma &= -\frac{J_{z_3} + J_{z_6}}{J_{x_7}}
\end{align*}
(26)
$$

By applying (26) in (25), the mechanism’s dynamic balanced model is as follows:

$$
\begin{align*}
\tau_1 &= k_1 \ddot{\theta}_1 \\
\tau_2 &= k_2 \ddot{\theta}_2 \\
\tau_3 &= k_3 \ddot{\theta}_3
\end{align*}
(27)
$$

where

$$
\begin{align*}
k_1 &= J_{z_1} + J_{z_2} + J_{z_3} + J_{z_4} + J_{z_5} + J_{z_6} + J_{z_7} + m_2 l_1^2 + m_3 (l_1^2 + l_2^2) \\
&\quad + \frac{(l_2^2 (m_2 + m_3))^2}{m_1} + \frac{2m_2^2}{m_2} \\
k_2 &= J_{z_2} + J_{z_3} + J_{z_4} + J_{z_5} + J_{z_7} + m_3 l_2^2 + \frac{(m_2^2)^2}{m_2} \\
&\quad + \frac{(J_{z_2} + J_{z_3} + J_{z_4} + J_{z_5} + J_{z_7} + m_3 l_2^2 + \frac{3 l_2^2}{m_2})^2}{m_2} \\
k_3 &= \frac{(J_{z_3} + J_{z_6})(J_{z_3} + J_{z_6} + J_{z_7})}{J_{x_7}}
\end{align*}
(28)
$$

3.2 3-dof RRR spatial serial mechanism

The entries of g^z for the unbalanced mechanism are given by

$$
\begin{align*}
D_1 &= 0 \\
D_2 &= g[(m_2 l_{g_2} + m_3 l_2)c(\theta_2) + m_3 l_{g_3}c(\theta_2 + \theta_3)] \\
D_3 &= g[m_3 l_{g_3}c(\theta_2 + \theta_3)]
\end{align*}
(29)
$$

By performing the static balancing,

$$
\begin{align*}
D_2 &= 0 \\
D_3 &= 0
\Rightarrow \begin{align*}
l_{g_2} &= -\frac{l_2 m_3}{m_2} \\
l_{g_3} &= 0
\end{align*}
(30)
$$

Substituting (30) in the mechanism model, the terms of the dynamic model of the statically balanced mechanism are obtained.
A new approach for obtaining the dynamic

\[
\begin{aligned}
D_{11} &= J_{x_2} s^2(\theta_3) + J_{x_2} s^2(\theta_2 + \theta_3) + J_{z_1} + J_{y_2} c^2(\theta_2) + J_{y_3} c^2(\theta_2 + \theta_3) \\
&\quad + m_3 l_1 c(\theta_2) c(\theta_3) + \left(\frac{m_2 l_1 - m_3 l_2 c(\theta_2)}{l_2}\right)^2 \\
D_{22} &= J_{x_2} + J_{z_1} + m_2 l_2^2 + \frac{\dot{\theta}_1^2 m_2^2}{m_2} \\
D_{33} &= J_{x_3} \\
D_{12} &= D_{13} = 0 \\
D_{23} &= D_{33} \\
D_{211} &= -\frac{1}{2} \left((J_{x_2} - J_{y_2}) s(2\theta_3) + (J_{x_3} - J_{y_3} - m_3 l_2^2 (1 + \frac{m_3}{m_2})) s(2\theta_2 + 2\theta_3) \right) \\
D_{311} &= \frac{1}{2} \left((J_{x_3} - J_{y_3}) s(2\theta_2 + 2\theta_3) \right) \\
D_{111} &= D_{122} = D_{133} = D_{222} = D_{233} = D_{322} = 0 \\
D_{112} &= -D_{211} \\
D_{113} &= -D_{311} \\
D_{121} &= D_{212} = D_{213} = D_{223} = D_{312} = D_{313} = D_{323} = 0 \\
g^* &= 0
\end{aligned}
\]

(31)

To perform the dynamic balancing, two counter-rotating disks are coupled to the mechanism, as shown in Figure 2. Their respective dynamic models are as follows

\[
\mathbf{\eta}_i^p = \begin{bmatrix}
J_{x_{i+3}} & 0 & 0 \\
0 & J_{y_{i+3}} & 0 \\
0 & 0 & J_{z_{i+3}}
\end{bmatrix};
\mathbf{\omega}_i^p = \begin{bmatrix}
\omega_{x_{i+3}} \\
\omega_{y_{i+3}} \\
\omega_{z_{i+3}}
\end{bmatrix}, \quad i = 1, 2
\]

(32)

The counter-rotating disks 1 and 2 (rigid bodies 4 and 5) are coupled to link 2. The angular displacement of disk 1 with respect to link 2 is \(\theta_3\), due to the belt transmission of the motor 3 motion, while the angular displacement of disk 2 with respect to link 2 is \(\beta\theta_3\), with \(\beta < 0\), due to the gear transmission of disk 1 motion.

Thus, the following quasi-velocities constraints are obtained:

\[
\begin{bmatrix}
|\omega_i|_{\theta_3} \\
|\omega_5|_{\theta_3}
\end{bmatrix} = \begin{bmatrix}
1_{|\theta_3|} \quad |\omega_2|_{\theta_3} \\
1_{|\theta_3|} \quad |\omega_3|_{\theta_3}
\end{bmatrix} + \begin{bmatrix}
0 \\
0
\end{bmatrix}
\Rightarrow \begin{bmatrix}
\omega_{x_3} = (\dot{\theta}_1 s(\theta_2)) c(\theta_3) + (\dot{\theta}_1 c(\theta_2)) s(\theta_3) \\
\omega_{y_3} = - (\dot{\theta}_1 s(\theta_2)) s(\theta_3) + (\dot{\theta}_1 c(\theta_2)) c(\theta_3) \\
\omega_{x_3} = \dot{\theta}_2 + \theta_3 \\
\omega_{x_5} = (\dot{\theta}_1 s(\theta_2)) c(\beta \theta_3) + (\dot{\theta}_1 c(\theta_2)) s(\beta \theta_3) \\
\omega_{y_5} = - (\dot{\theta}_1 s(\theta_2)) s(\beta \theta_3) + (\dot{\theta}_1 c(\theta_2)) c(\beta \theta_3) \\
\omega_{x_5} = \dot{\theta}_2 + \beta \theta_3
\end{bmatrix}
\]

(33)

\[
\mathbf{p}^o = \begin{bmatrix}
\dot{\theta}_1 s(\theta_2 + \theta_3) \\
\dot{\theta}_1 c(\theta_2 + \theta_3) \\
\dot{\theta}_2 + \theta_3 \\
\dot{\theta}_1 s(\theta_2 + \beta \theta_3) \\
\dot{\theta}_1 c(\theta_2 + \beta \theta_3) \\
\dot{\theta}_2 + \beta \theta_3
\end{bmatrix}
\]

(34)
By applying (31), (32) and (35) in (11), (12) and (13), the mechanism's statically balanced model coupled with the counter-rotating disks is obtained:

\[
\begin{align*}
D'_{11} &= D_{11} + J_{x5} \sin^2(\theta_2 + \theta_2) + J_{y5} \sin^2(\beta\theta_2 + \theta_2) \\
&+ J_{y5} \cos^2(\beta\theta_2 + \theta_2) \\
D'_{22} &= D_{22} + J_{z4} + J_{z5} \\
D'_{33} &= D_{33} + J_{z4} + J_{z5} \beta^2 \\
D'_{12} &= D_{12} = D_{21} = 0 \\
D'_{23} &= D_{23} + J_{z4} + J_{z5} \beta \\
D'_{211} &= D_{211} \\
D'_{311} &= D_{311} \\
D'_{111} &= D_{112} = D'_{133} = D'_{222} = D'_{233} = D'_{322} = D'_{333} = 0 \\
D'_{112} &= D_{112} + \frac{1}{4} \left((J_{x4} - J_{y4}) \sin(2\theta_2 + 2\theta_3) + (J_{z5} - J_{y5}) \sin(2\beta\theta_2 + 2\theta_3) \right) \\
D'_{113} &= D_{113} + \frac{1}{4} \left((J_{x4} - J_{y4}) \sin(2\theta_2 + 2\theta_3) + (J_{z5} - J_{y5}) \sin(2\beta\theta_2 + 2\theta_3) \right) \\
D'_{121} &= D_{121} = D'_{212} = D'_{213} = D_{223} = D'_{312} = D'_{313} = D'_{323} = 0
\end{align*}
\]
To perform the dynamic balancing, ω^{α} becomes diagonal for a specific value of β and ν^{α} is null for a given set of the mechanism’s parameters. Thus,

$$
\begin{align*}
D'_{23} &= 0 \\
D'_{211} &= 0 \\
D'_{311} &= 0 \\
D'_{112} &= 0 \\
D'_{113} &= 0
\end{align*}
$$

\Rightarrow

$$
\begin{align*}
\beta &= -\frac{J_{x3} + J_{y4}}{J_{x5}} \\
J_{x2} &= J_{y2} \\
J_{x3} &= J_{x5} + m_3 l_2^2 (1 + \frac{m_3}{m_2}) \\
J_{x4} &= J_{y4} \\
J_{x5} &= J_{y5}
\end{align*}
$$

By applying (37) in (36), the mechanism’s dynamic balanced model is as follows

$$
\begin{align*}
\tau_1 &= k_1 \ddot{\theta}_1 \\
\tau_2 &= k_2 \ddot{\theta}_2 \\
f_3 &= k_3 \ddot{d}_3
\end{align*}
$$

where

$$
\begin{align*}
k_1 &= J_{z1} + J_{y2} + J_{y3} + J_{y4} + J_{y5} + m_2 l_1^2 + m_3 (l_1^2 + l_2^2) + \frac{r_3^2 m_3^2}{m_2} \\
k_2 &= J_{z2} + J_{z3} + J_{z4} + J_{z5} + m_3 l_2^2 + \frac{r_3^2 m_3^2}{m_2} \\
k_3 &= \frac{(J_{x3} + J_{x4} (J_{x3} + J_{x4} + J_{x5}))}{J_{x5}}
\end{align*}
$$

Note that the necessary conditions for the dynamic balancing of this mechanism require very high longitudinal moments of inertia for the bars 2 and 3, which is not practically feasible for an industrial manipulator. Among the five conditions of (37), let us consider the following two:

$$
\begin{align*}
J_{x2} &= J_{y2} \\
J_{x3} &= J_{y3} + m_3 l_2^2 (1 + \frac{m_3}{m_2})
\end{align*}
$$

According to Denavit-Hartenberg convention, the x-axis is the longitudinal direction while the y-axis and the z-axis are the corresponding transversal directions, for the bars 2 and 3. In this case, typically, the J_x moment of inertia is quite low in a comparison with J_y and J_z. In order to satisfy the balancing conditions, the values of J_x should be equal to J_y for bar 2 and higher than J_y for bar 3. Consequently, the link section should be increased according, which would lead to an inconvenient extremely large cross section area.

In the following example, which corresponds to another 3-dof spatial serial mechanism, such inconvenience will not occur.
3.3 3-dof RRP spatial serial mechanism (SCARA)

The entries of g^e for the unbalanced mechanism are given by

$$
\begin{align*}
D_1 &= g[(m_1l_{g1} + m_2l_1 + m_3l_1)c(\theta_1) + m_2l_g c(\theta_1 + \theta_2)] \\
D_2 &= g[m_2l_g c(\theta_1 + \theta_2)] \\
D_3 &= 0
\end{align*}
$$

(41)

By performing the static balancing,

$$
\begin{align*}
D_1 &= 0 \\
D_2 &= 0 \\
\Rightarrow & \begin{cases}
 l_{g1} = -\frac{l_1(m_2+m_3)}{m_1} \\
 l_{g2} = 0
\end{cases}
\end{align*}
$$

(42)

Substituting (42) in the mechanism model, the terms of the dynamic model of the statically balanced mechanism (Figure 3) are obtained.

$$
\begin{align*}
D_{11} &= J_{z1} + J_{z3} + m_2l_1^2 + m_3l_1^2 + \frac{\bar{g}^e(m_2+m_3)^2}{m_1} \\
D_{22} &= J_{z2} + J_{z3} \\
D_{33} &= m_3 \\
D_{12} &= D_{21} \\
D_{13} &= D_{23} = 0 \\
v^e &= 0 \\
g^e &= 0
\end{align*}
$$

(43)

To perform the dynamic balancing, two counter-rotating disks are coupled to the mechanism. Once the disks rotate in a single plane, their corresponding dynamic models are as follows:

$$
\mathbf{m}_i^e = [J_{z_i+3}] ; \quad \mathbf{g}_i^e = [\omega_{z_{i+3}}] , \quad i = 1, 2
$$

(44)

The counter-rotating disks 1 and 2 (rigid bodies 4 and 5) are coupled to link 1. The angular displacement of disk 1 with respect to link 1 is θ_2, due to the belt transmission of the motor 2 motion, while the angular displacement of disk 2 with respect to link 1 is $\beta \theta_2$, with $\beta < 0$, due to the gear transmission of disk 1 motion.

Thus, the following quasi-velocities constraints are obtained:

$$
\begin{align*}
\omega_{z4} &= \omega_{z1} + \dot{\theta}_2 \\
\omega_{z5} &= \omega_{z1} + \beta \dot{\theta}_2
\end{align*}
\Rightarrow \begin{cases}
\omega_{z4} = \dot{\theta}_1 + \dot{\theta}_2 \\
\omega_{z5} = \dot{\theta}_1 + \beta \dot{\theta}_2
\end{cases} \Rightarrow \mathbf{g}^\circ = \begin{bmatrix} \dot{\theta}_1 + \dot{\theta}_2 \\ \dot{\theta}_1 + \beta \dot{\theta}_2 \end{bmatrix}
$$

(45)

$$
\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{\partial \mathbf{g}^\circ}{\partial \mathbf{z}_4^e} & 0 & 1 \\ \frac{\partial \mathbf{g}^\circ}{\partial \mathbf{z}_5^e} & 0 & 1 \end{bmatrix}
$$

(46)
By applying (43), (44) and (46) in (11), (12) and (13), the mechanism’s statically balanced model coupled with the counter-rotating disks is obtained:

\[
\begin{align*}
D'_{11} &= D_{11} + J_{z_4} + J_{z_5} \\
D'_{22} &= D_{22} + J_{z_4} + J_{z_5} \beta^2 \\
D'_{33} &= D_{33} \\
D'_{12} &= D_{12} + J_{z_4} + J_{z_5} \beta \\
D'_{13} &= 0 \\
D'_{23} &= 0 \\
\nu'_{\#} &= 0
\end{align*}
\]

(47)

To perform the dynamic balancing, the values of \(\beta \) as function of the mechanism’s parameters that make \(\nu'_{\#} \) diagonal are found. Thus,

\[
D'_{12} = 0 \Rightarrow \beta = -\frac{J_{z_2} + J_{z_3} + J_{z_4}}{J_{z_5}}
\]

(48)
By applying (48) in (47), the mechanism’s dynamic balanced model is as follows:

\[
\begin{cases}
\tau_1 = k_1 \ddot{\theta}_1 \\
\tau_2 = k_2 \ddot{\theta}_2 \\
f_3 = k_3 \ddot{d}_3
\end{cases}
\]

(49)

where

\[
\begin{cases}
k_1 = J_{z_1} + J_{z_2} + J_{z_3} + J_{z_4} + J_{z_5} + m_2 l_1^2 + m_3 l_1^2 + \frac{I_3^2 (m_2 + m_3)^2}{m_1} \\
k_2 = \frac{(J_{z_2} + J_{z_3} + J_{z_4})(J_{z_2} + J_{z_3} + J_{z_4} + J_{z_5})}{J_{z_5}} \\
k_3 = m_3
\end{cases}
\]

(50)

Note that the necessary conditions for the dynamic balancing of this mechanism do not require restrictions on the mechanism inertia parameters, as in the previous example. Thus, as the mechanism in the previous example and the mechanism of this example are both spatial serial mechanisms that perform end-effector translations in three axes, it can be said that the mechanism in question is a good alternative to Section 3.2 mechanism in applications in which the dynamic balancing is advantageous to the system.

4 Conclusions

This work dealt with a systematic formulation for the adaptive balancing. This special formulation uses the dynamic coupling between subsystems in order to derive the equations of motion of the whole system explicitly. Consequently, this feature allows the automatic generation of the adaptive balancing conditions. Two traditional balancing techniques were employed here: the addition of counterweight and counter-rotating disks coupled to the moving links. In addition, the feasibility of the dynamic decoupling for three distinct types of serial manipulators was discussed regarding the achievement of such balancing and the complexity level of the modified mechanical structure. The balancing conditions were developed for 3-dof spatial and planar open-loop kinematic chain mechanisms, whose topologies are composed of revolute and prismatic joints. By analysing the necessary conditions, one can notice that the adaptive balancing brings great benefits for the planar RRR and the spatial RRP. However, for the spatial RRR, in spite of the achievement of the adaptive balancing, the modifications in the mechanical structure require very high longitudinal moments of inertia for the second and third bars of the mechanism, which would lead to bars with extremely large cross-section areas. Consequently, the authors believe that the discussion provided here might help the designer to choose an adequate topology for a specific application taking advantage of the adaptive balancing whenever it brings no further consequences in terms of the added inertias.

Nomenclature

- a, b, \ldots Scalars, components of column-matrices, components of matrices or indexes
- A, B, \ldots Scalars, components of column-matrices or components of matrices
- a, b, \ldots Column-matrices
- A, B, \ldots Matrices
- a, b, \ldots Vectors
- A, B, \ldots Coordinate systems
- $\mathcal{A}, \mathcal{B}, \ldots$ Sets or multibody mechanical systems
- B_i Coordinate system fixed in the i^{th} rigid body of the mechanical system
- C Kinematic constraints matrix
- $c(\cdot)$ Shorthand notation for $\cos(\cdot)$
- g Gravitational acceleration
- $g^\#$ Generalised gravitational forces column-matrix of a serial mechanism
- $g^\#_i$ Generalised gravitational forces column-matrix of a counter-rotating disc
- g' Generalised uncoupled gravitational forces column-matrix of a serial mechanism coupled with counter-rotating discs
- $g'^\#$ Generalised gravitational forces column-matrix of a serial mechanism coupled with counter-rotating discs
- $J_{x_i}, J_{y_i}, J_{z_i}$ Principal moments of inertia of the i^{th} rigid body of the mechanical system
- l_i Length of the i^{th} bar of a serial mechanism
- l_{g_i} Position of the mass center of the i^{th} bar relative to the i^{th} joint and of a serial mechanism
- m_i Mass of the i^{th} rigid body of the mechanical system
- $M^\#$ Generalised inertia matrix of a serial mechanism
- $M^\#_i$ Generalized inertia matrix of a counter-rotating disc
- $M^\#_i$ Generalised uncoupled inertia matrix of a serial mechanism coupled with counter-rotating discs
- $M^\#_i$ Generalised inertia matrix of a serial mechanism coupled with counter-rotating discs
- $N^\#$ Inertial reference frame
- $p^\#$ Independent quasi-velocities column-matrix
- $p^\#$ Redundant quasi-velocities column-matrix
- q_i Generalised coordinate
- $q(\cdot)$ Shorthand notation for $\sin(\cdot)$
- u_i Effort made by the i^{th} actuator of a serial mechanism
- u Generalised actuators’ efforts column-matrix
A new approach for obtaining the dynamic

\(\omega^a \) Generalised coupled gyroscopic inertia forces column-matrix of a serial mechanism

\(\omega^c \) Generalised coupled gyroscopic inertia forces column-matrix of a counter-rotating disc

\(\omega' \) Generalised uncoupled gyroscopic inertia forces column-matrix of a serial mechanism coupled with counter-rotating discs

\(\omega'
\) Generalised coupled gyroscopic inertia forces column-matrix of a serial mechanism coupled with counter-rotating discs

\([\omega_i]_{B_j}\) Angular velocity of the \(i^{th} \) rigid body of the mechanical system measured relatively to a inertial reference frame \(N \), written in the basis of \(B_j \)

\(\omega_{x_i} \) 1st component of \([\omega_i]_{B_i}\)

\(\omega_{y_i} \) 2nd component of \([\omega_i]_{B_i}\)

\(\omega_{z_i} \) 3rd component of \([\omega_i]_{B_i}\)

0 Null column-matrix or null matrix

1 Identity matrix

\(\mathbf{1}_{B_i | B_j} \) Change of basis matrix, i.e. \([\mathbf{v}]_{B_j} = [\mathbf{1}_{B_i | B_j}] \cdot [\mathbf{v}]_{B_i}\)

\([\cdot]^T\) Matrix transposition