Evaluation of RANS/actuator disk modelling of wind turbine wake flow using wind tunnel measurements
by Jonathon Sumner; Guillaume Espana; Christian Masson; Sandrine Aubrun
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 5, No. 1/2/3, 2013

Abstract: Wake modelling plays a central role in wind farm planning through the evaluation of losses, the prediction of the energy yield, and the estimation of turbine loads. These models must be reasonably accurate - to minimise financial risk - and yet economical so that many configurations can be tested within reasonable time. While many such models have been proposed, an especially attractive approach is based on the solution of the Reynolds-averaged Navier-Stokes equations with two-equation turbulence closure and an actuator disk representation of the rotor. The validity of this approach and its inherent limitations however remain to be fully understood. To this end, detailed wind tunnel measurements in the wake of a porous disk (with similar aerodynamic properties as a turbine rotor) immersed in a uniform flow are compared with the predictions of several closures. Agreement with measurements is found to be excellent for all models. This unexpected result seems to derive from a fundamental difference in the turbulent nature of the homogeneous wind tunnel flow and that of the atmospheric boundary layer.

Online publication date:: Fri, 29-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com