Applying cross-data set identity reasoning for producing URI embeddings over hundreds of RDF data sets
by Michalis Mountantonakis; Yannis Tzitzikas
International Journal of Metadata, Semantics and Ontologies (IJMSO), Vol. 15, No. 1, 2021

Abstract: There is a proliferation of approaches that exploit RDF data sets for creating URI embeddings, i.e., embeddings that are produced by taking as input URI sequences (instead of simple words or phrases), since they can be of primary importance for several tasks (e.g., machine learning tasks). However, existing techniques exploit either a single or a few data sets for creating URI embeddings. For this reason, we introduce a prototype, called LODVec, which exploits LODsyndesis for enabling the creation of URI embeddings by using hundreds of data sets simultaneously, after enriching them with the results of cross-data set identity reasoning. By using LODVec, it is feasible to produce URI sequences by following paths of any length (according to a given configuration), and the produced URI sequences are used as input for creating embeddings through word2vec model. We provide comparative results for evaluating the gain of using several data sets for creating URI embeddings, for the tasks of classification and regression, and for finding the most similar entities to a given one.

Online publication date:: Tue, 17-Aug-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Metadata, Semantics and Ontologies (IJMSO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com