The full text of this article


Algorithms and analysis of scheduling for loops with minimum switching
by Zili Shao, Qingfeng Zhuge, Meilin Liu, Chun Xue, Edwin H.M. Sha, Bin Xiao
International Journal of Computational Science and Engineering (IJCSE), Vol. 2, No. 1/2, 2006


Abstract: Switching activity and schedule length are the two of the most important factors in power dissipation. This paper studies the scheduling problem that minimises both schedule length and switching activities for applications with loops on multiple functional unit architectures. We show that, to find a schedule that has the minimal switching activities among all minimum latency schedules with or without resource constraints is NP-complete. Although the minimum latency scheduling problem is polynomial time solvable if there is no resource constraint or only one functional unit (FU), the problem becomes NP-complete when switching activities are considered as the second constraint. An algorithm, Power Reduction Rotation Scheduling (PRRS), is proposed. The algorithm attempts to minimise both switching activities and schedule length while performing scheduling and allocation simultaneously. Compared with the list scheduling, PRRS shows an average of 20.1% reduction in schedule length and 52.2% reduction in bus switching activities. Our algorithm also shows better performance than the approach that considers scheduling and allocation in separate phases.

Online publication date: Sat, 03-Jun-2006


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email