Safe-driving cloning by deep learning for autonomous cars
by Wael Farag
International Journal of Advanced Mechatronic Systems (IJAMECHS), Vol. 7, No. 6, 2017

Abstract: In this paper, a convolutional neural network (CNN) to learn safe driving behaviour and smooth steering manoeuvring is proposed as an empowerment of autonomous driving technologies. The training data is collected from a front-facing camera and the steering commands issued by an experienced driver driving in traffic as well as urban roads. This data is then used to train the proposed CNN to facilitate what it is called 'behavioural cloning'. The proposed behaviour cloning CNN is named as 'BCNet', and its deep 17-layer architecture has been selected after extensive trials. The BCNet got trained using Adam's optimisation algorithm as a variant of the stochastic gradient descent (SGD) technique. The paper goes through the development and training process in details and shows the image processing pipeline harnessed in the development. The proposed approach is proved successful in cloning the driving behaviour embedded in the training dataset after extensive simulations.

Online publication date: Wed, 17-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Mechatronic Systems (IJAMECHS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email