Feature-opinion pair identification method in two-stage based on dependency constraints
by Shulong Liu; Xudong Hong; Zhengtao Yu; Hongying Tang; Yulong Wang
International Journal of Information and Communication Technology (IJICT), Vol. 13, No. 4, 2018

Abstract: Feature-opinion pair identification includes opinion words, opinion targets extraction and their relations identification, is important for analysis online reviews. In this paper, we propose a feature-opinion pair identification method in two-stage based on dependency constraints according to the relationship between the identification of feature-opinion pair and dependency constraints. In the first stage, we construct dependency constraints based on the dependency information of words. Then, dependency constraints and seed words are employed to extract opinion words and opinion targets. In the second stage, we use opinion words and opinion targets extracted in the first stage to construct candidate feature-opinion pairs. Thereafter, integrate dependency constraints, location features and part-of-speech features into support vector machine to identify feature-opinion pair. Our experimental result using online reviews demonstrates that the proposed method is effective in the identification of feature-opinion pairs, and the F-score has reached 83.85%.

Online publication date: Mon, 21-May-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com