The full text of this article

 

Adaptive mobility-based intelligent decision-making system for driver behaviour prediction with motion nano sensor in VANET
by S. Cloudin; P. Mohan Kumar
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 25, No. 3/4, 2018

 

Abstract: Vehicular ad-hoc network (VANET) offers a dedicated short-range wireless communication among vehicles on the road and to the road side unit. This paper contributes towards an intelligent decision-making system based on the driver behaviour under normal, reckless, fatigue and drunken conditions, and in developing a mobility model to adapt these support vector machine (SVM) classifier behaviours. Attributes such as speed, accelerometer, alcohol and eye blink values are fed to the mega trend diffusion (MTD) function and the attributes are merged and they are classified using SVM. The basic decisions are made by fuzzy interference system (FIS) which is used to find the driver behaviour and is predicted and appropriate decision will be taken for SVM classification. According to the behaviour of the driver, the speed and direction of the vehicle will be affected and it will be reflected in the mobility pattern of other vehicles. In this work, motion nano sensor was used to sense the values to control the driver behaviour.

Online publication date: Sun, 16-Sep-2018

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com