The full text of this article

 

Survey of various methods for diagnostic signatures for cutaneous melanoma from genetic and imaging data
by K. Thenmozhi; M. Rajesh Babu
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 13, No. 1/2/3, 2018

 

Abstract: Early diagnosis of cutaneous melanoma is very hard for experienced dermatologists. Even though a lot of advanced imaging techniques and clinical diagnostic algorithms such as dermoscopy and the ABCD rule of dermoscopy respectively are available. The accuracy is an issue of distress (estimated to be about 75%-85%) especially with oblique pigmented lesions. An effective diagnosis can be achieved by reducing the viewer variability's found in dermatologists' examinations. In order to improve some of existing methods and budding new techniques to ease accurate, fast and reliable diagnosis of cutaneous melanoma. In this paper, different types diagnostic system of melanoma namely, pre-processing feature extraction, feature selection and classification is explained. The results of feature selection were optimised from advanced classes of classification techniques; namely, two weighted k-nearest neighbour (k-NN) classifiers (k = 1, 30), a decision tree (DT), and the random forest (RF) algorithm are employed.

Online publication date: Fri, 03-Nov-2017

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com