Surface grinding of CFRP composites using rotary ultrasonic machining: design of experiment on cutting force, torque and surface roughness
by Hui Wang; Fuda Ning; Yingbin Hu; Dongping Du; Weilong Cong
International Journal of Manufacturing Research (IJMR), Vol. 12, No. 4, 2017

Abstract: Carbon fiber reinforced plastic (CFRP) composites provide excellent properties, which make them attractive in many industries. However, due to the properties of high stiffness, anisotropy, and high abrasiveness of carbon fiber in CFRPs, they are regarded as difficult-to-cut materials. To find an efficient surface grinding process for CFRP, this paper conducts an investigation using RUM. Design of experiment (DOE) is vital to evaluate effects of input variables on output variables, and it could be used to obtain the optimal values of variables in such a process. DOE could also be used to decrease the test numbers, the research cost etc. However, there are no investigations on DOE in such a process. This investigation firstly tests the effects of three input variables, including tool rotation speed, feedrate, and ultrasonic power, on output variables, including cutting force, torque, and surface roughness, at two levels. This investigation will provide guides for future research.

Online publication date: Mon, 27-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email