The full text of this article

 

Multivariate summary approach to omics data from crossover design with two repeated factors
by Sunghoon Choi; Soo-yeon Park; Hoejin Kim; Oran Kwon; Taesung Park
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 18, No. 3, 2017

 

Abstract: A crossover design, with two repeated factors, is commonly used for analysing tolerance tests, i.e., measurements of physiologic response, following ingestion of some exogenous substance. For data analysis using a crossover design, a standard approach is to use linear mixed effect models (LMMs), as these can adequately handle correlated measurements from the crossover design. Alternatively, univariate analyses, using single summary statistics, can be employed for assessments such as the difference of measurements between time points, incremental area under curve (iAUC), Cmax etc. However, the use of summary measures may result in the loss of information. In this study, instead of using one single summary measure, we propose using multiple summary measures simultaneously through LMMs by taking their correlation into account. We compare the performance of the proposed method with other existing methods through real data analysis and simulation studies. We show that our proposed method has equivalent power to that of standard LMM approach, while using a much fewer number of parameters.

Online publication date: Tue, 03-Oct-2017

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com