Adaptive backstepping discrete-time control for a full-car active suspension
by Toshio Yoshimura
International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 13, No. 3, 2017

Abstract: This paper presents a simplified Adaptive Backstepping Control (ABC) in the design of an active suspension for a full-car model with unknown external disturbances. It is assumed that the full-car models are described by an uncertain discrete-time state equation, and that the observation of the states is taken with measurement noises. The proposed ABC is designed in a simplified structure by removing the repeated heavy computation of non-linear functions, and the design parameters are selected by using an appropriate Lyapunov function. The unmeasurable states and uncertainties for the uncertain discrete-time state equations are estimated by using the simplified weighted least squares estimator. The simulation experiment indicates that the proposed ABC is suitable for the design of the active suspension for the full-car model because it suppresses the movement of the car body and the suspension travel, and improves the ride comfort of passengers.

Online publication date: Fri, 07-Apr-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Autonomous Systems (IJVAS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email