Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame
by Nantiwat Pholdee; Sujin Bureerat; Ali Rıza Yıldız
International Journal of Vehicle Design (IJVD), Vol. 73, No. 1/2/3, 2017

Abstract: In this paper, a many-objective hybrid real-code population-based incremental learning and differential evolution algorithm (MnRPBILDE) is proposed based on the concept of objective function space reduction. The method is then implemented on real engineering design problems. The topology, shape and sizing design of a simplified automotive floor-frame structure are formulated and used as test problems. A variety of well-established multi-objective evolutionary algorithms (MOEAs) including the original version of MnRPBILDE are employed to solve the test problems while the results are compared based on hypervolume and C indicators. The results indicate that our proposed algorithm outperforms the other MOEAs. The proposed algorithm is effective and efficient for many-objective optimisations of a car floor-frame structure.

Online publication date: Wed, 22-Feb-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com