The full text of this article

 

Controlling an unmanned quad-rotor aerial vehicle with model parameter uncertainty and actuator failure
by Abdel Ilah Nour Alshbatat; Liang Dong; Peter James Vial
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 15, No. 4, 2016

 

Abstract: It is challenging to stabilise an unmanned quad-rotor aerial vehicle when a dynamic change in its model parameters or failure of its actuator occurs. In this paper, a quad-rotor unmanned aerial vehicle (UAV) is controlled based on model reference adaptive control (MRAC) and a linear quadratic regulator (LQR). The kinematics and dynamics of the quad-rotor are calculated, and Lyapunov's direct stability method is used to design the MRAC. In order to evaluate the performance of the adaptive control algorithms in the presence of thrust loss that may occur due to component failure or physical damage, a real quad-rotor is built from scratch using commercial components. Both controllers are designed, implemented and tested using AVR microcontrollers. Comparison is made between the controllers under normal and faulty situations and the effectiveness of the proposed control strategy is verified. Simulation and experimental results show that both controllers have satisfactory performance under normal conditions and even in the presence of the partial loss of thrust that may occur due to the loss of control effectiveness in one of the rotors or the damage of one propeller, superior system performance is observed using the proposed MRAC controller.

Online publication date: Wed, 26-Oct-2016

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com