The full text of this article

 

Adaptive data collection approach based on sets similarity function for saving energy in periodic sensor networks
by Hassan Harb; Abdallah Makhoul; Ali Jaber; Rami Tawil; Oussama Bazzi
International Journal of Information Technology and Management (IJITM), Vol. 15, No. 4, 2016

 

Abstract: Disaster monitoring becomes a requirement for collecting and analysing data in order to offer a better disaster management situation. Periodic sensor networks (PSNs) are usually used in disaster monitoring and are characterised by the acquisition of sensor data from remote sensor nodes before being forwarded to the sink in a periodic basis. The major challenges in PSN are energy saving and collected data reduction in order to increase the sensor network lifetime and to ensure a long-time monitoring for disasters. In this paper, we propose an adaptive sampling approach for energy-efficient periodic data collection in sensor networks. Our proposed approach provides each sensor node the ability to identify redundancy between collected data over time, by using similarity functions, and allowing for sampling adaptive rate. Experiments on real sensors data show that our approach can be effectively used to conserve energy in the sensor network and to increase its lifetime, while still keeping a high quality of the collected data.

Online publication date: Thu, 22-Sep-2016

 

is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

 
Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

 
Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:

 

    Username:        Password:         

Forgotten your password?


 
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

 
If you still need assistance, please email subs@inderscience.com