The full text of this article


Investigating supply chain performance under game theory framework using intelligent particle swarm optimisation
by Annu Tyagi; Satish Tyagi
International Journal of Business Performance and Supply Chain Modelling (IJBPSCM), Vol. 8, No. 3, 2016


Abstract: Game theory has been extensively used for analysis of situations comprising of multi-agents and their strategies. Supply chain can be defined as a network of multi-organisations interacting with each other during the decision analysis. Therefore, this paper exploits the salient features of game theory in mathematically modelling a supply chain problem and investigating its functioning under various alliances among partners of the same stage. The proposed structure of supply chain considers four different stages in the illustrative example. Profit of an individual partner at each stage while satisfying the constraints is considered in the objective function. In addition, transportation cost and facility utilisation within the whole supply chain are also targeted. Normalised values of different objectives are combined to formulate a multi-objective optimisation problem. This paper introduces a novel intelligent particle swarm optimisation algorithm which is embedded with two beneficial attributes viz.: 1) normal distribution in traditional particle swarm optimisation; 2) time varying acceleration coefficients. The computational experiment finds that maximum profit is gained when players are in union. It is also evident from results that the proposed algorithm outperforms over other variants of algorithm for the underlying problem thereby authenticating its superiority.

Online publication date: Thu, 18-Aug-2016


is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Performance and Supply Chain Modelling (IJBPSCM):
Login with your Inderscience username and password:


    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email